STATISTICS (STAT)

200 Level Courses

STAT 250: Introductory Statistics I. 3 credits.
Elementary introduction to statistics with applications to all fields of study. Topics include data analysis for one and two variables, probability, estimation and hypothesis testing for proportions and means, correlation, and regression. Statistical software used for assignments. Required course for the Digital Technology Credential. Offered by Statistics. Limited to three attempts.

Mason Core: Quantitative Reasoning

Recommended Prerequisite: High school algebra.

Schedule Type: Lecture

Grading: This course is graded on the Undergraduate Regular scale.

STAT 260: Introduction to Statistical Practice I. 3 credits.
Data-oriented introduction to fundamental concepts and methods of applied statistics. Topics include: exploratory data analysis; sampling and principles of experimental design; sampling distributions; confidence intervals and tests for one and two sample means and proportions; analysis of contingency tables; simple linear regression; and correlation. Extensive use of statistical software. Intended primarily for students in the Statistics Bachelor’s program. Offered by Statistics. Limited to three attempts.

Registration Restrictions:
- Required Prerequisites: MATH 113, 115, 116 or 124.
- May be taken concurrently.
- Requires minimum grade of C.
- Requires minimum grade of XS.

Students with the terminated from CEC major attribute may not enroll.

Schedule Type: Lecture

Grading: This course is graded on the Undergraduate Regular scale.

STAT 334: Probability and Statistics for Engineers and Scientists I. 3 credits.
Introduction to probability and statistics with applications to computer science, engineering, operations research, and information technology. Basic concepts of probability, random variables and expectation, Bayes rule, bivariate distributions, sums of independent random variables, correlation and least squares estimation, central limit theorem, sampling distributions, confidence interval construction, and hypothesis testing for a single sample and two samples. Offered by Statistics. Limited to two attempts.

Registration Restrictions:
- Required Prerequisites: MATH 114, 116 or 213.
- Requires minimum grade of C.
- Requires minimum grade of XS.

Students with the terminated from CEC major attribute may not enroll.

Schedule Type: Lecture

Grading: This course is graded on the Undergraduate Regular scale.

300 Level Courses

STAT 334: Introduction to Probability Models and Simulation. 3 credits.
Introduction to basic probability and principles of simulation. Emphasis is placed on formulation of models and simulation applications to statistical methodology. Topics include: basic probability rules, counting methods, discrete and continuous probability spaces, independence, conditional probability, expectation, variance, and limit theorems. Distributions covered include the binomial, hypergeometric, Poisson, normal, Gamma, Beta, multinomial, and bivariate normal. Intended primarily for students in the Statistics Bachelor’s program. Offered by Statistics. Limited to two attempts.

Registration Restrictions:
- Required Prerequisites: MATH 213, 215, 216 or 218.
- Requires minimum grade of C.
- Requires minimum grade of XS.

Students with the terminated from CEC major attribute may not enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Undergraduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 350: Introductory Statistics II. 3 credits.

Registration Restrictions:
Required Prerequisites: STAT 250\(^C\), 250\(^XS\), 260\(^C\) or 260\(^XS\).
\(^C\) Requires minimum grade of C.
\(^XS\) Requires minimum grade of XS.

Students with the terminated from CEC major attribute may **not** enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Undergraduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 354: Probability and Statistics for Engineers and Scientists II. 3 credits.
Multivariate probability distributions, variable transformations, properties of estimators, inference on means, variances, and proportions for two samples, contingency tables, goodness-of-fit test, nonparametric tests, simple linear regression, multiple linear regression, logistic regression, ANOVA, basic experimental design, basic resampling methods such as the bootstrap. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). Limited to two attempts.

Registration Restrictions:
Required Prerequisites: (STAT 334\(^C\) or 334\(^XS\)) or STAT 344\(^C\), L344 or 344\(^XS\) or ((STAT 346\(^C\) or 346\(^XS\)) and (STAT 362\(^C\) or 362\(^XS\)).
\(^C\) Requires minimum grade of C.
\(^XS\) Requires minimum grade of XS.

Students with the terminated from CEC major attribute may **not** enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Undergraduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 356: Statistical Theory. 3 credits.

Registration Restrictions:
Required Prerequisites: STAT 346\(^C\), 346\(^XS\), MATH 351\(^C\) or 351\(^XS\).
\(^C\) Requires minimum grade of C.
\(^XS\) Requires minimum grade of XS.

Students with the terminated from CEC major attribute may **not** enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Undergraduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 360: Introduction to Statistical Practice II. 3 credits.
Continued study of the process, concepts, and methods of statistical investigations with the communication of statistical results being emphasized. Topics in the course will include: chi-square procedures, an introduction to the design and analysis of experiments, ANOVA, simple linear and multiple regression, nonparametric methods and basic resampling methods such as bootstrap. Statistical software will be used extensively throughout the course. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). Limited to two attempts.

Registration Restrictions:
Required Prerequisites: (STAT 250\(^C\), 250\(^XS\), 260\(^C\), 260\(^XS\), BENG 241\(^C\) or 241\(^XS\)) and (MATH 114\(^C\), 114\(^XS\), 116\(^C\) or 116\(^XS\)).
\(^\ast\) May be taken concurrently.
\(^C\) Requires minimum grade of C.
\(^XS\) Requires minimum grade of XS.

Schedule Type: Lecture

Grading:
This course is graded on the Undergraduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 362: Introduction to Computer Statistical Packages. 3 credits.

Registration Restrictions:
Required Prerequisites: STAT 250\(^C\), 250\(^XS\), 260\(^C\), 260\(^XS\), BUS 310\(^C\), 310\(^XS\), STAT 344\(^C\), 344\(^XS\) or L344.
\(^C\) Requires minimum grade of C.
\(^XS\) Requires minimum grade of XS.

Students with the terminated from CEC major attribute may **not** enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Undergraduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

400 Level Courses

STAT 455: Experimental Design. 3 credits.
Introduces problems and techniques inherent in design of experiments, which refers to planning an experiment so that collected data can be analyzed by statistical methods. Covers the two aspects to any experimental problem: the design itself and the analysis of the resulting data. Examples from numerous disciplines in the sciences and the humanities are discussed. Data analysis is emphasized. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). Limited to two attempts.
STAT 456: Applied Regression Analysis. 3 credits. Introduces statistical modeling with a focus on regression. Topics include: Correlation, simple and multiple regression models, model fitting, variable selection, diagnostic tools, model validation, and inference for regression parameters. Additional topics covered include logistic regression and time series analysis with a focus on smoothing techniques and decomposition. A statistical software package is used extensively throughout the course. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). Limited to two attempts.

Registration Restrictions:
Required Prerequisites: (STAT 350\(^C\) or 350\(^{XS}\)) or (STAT 354\(^C\) or 354\(^{XS}\)) or (STAT 360\(^C\) or 360\(^{XS}\)).

\(^C\) Requires minimum grade of C.
\(^{XS}\) Requires minimum grade of XS.

Students with the terminated from CEC major attribute may not enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Undergraduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 460: Introduction to Biostatistics. 3 credits. Focuses on biostatistical aspects of design and analysis of biomedical studies, including epidemiologic observational studies and randomized clinical trials. Topics include randomization principle, confounding, ethics in human experimentation, methods of randomization, stratification, primary outcome analyses, covariate-adjusted analyses, epidemiologic measures, and sample size and power computation. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). Limited to two attempts.

Registration Restrictions:
Required Prerequisites: (STAT 350\(^C\) or 350\(^{XS}\)) or (STAT 354\(^C\) or 354\(^{XS}\)) or (STAT 360\(^C\) or 360\(^{XS}\)) or (BUS 310\(^C\) or 310\(^{XS}\)).

\(^C\) Requires minimum grade of C.
\(^{XS}\) Requires minimum grade of XS.

Students with the terminated from CEC major attribute may not enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Undergraduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 462: Applied Multivariate Statistics. 3 credits. Introduces a variety of multivariate statistical methods as aids to analyzing and interpreting large data sets. These methods will have general applications across a wide range of disciplines. Topics include: principal components analysis, cluster analysis, discriminant analysis, multi-dimensional scaling, correspondence analysis, and canonical correlation analysis. Extensive use of statistical software. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). Limited to two attempts.

Recommended Corequisite: STAT 362

Registration Restrictions:
Required Prerequisites: (STAT 350\(^C\) or 350\(^{XS}\)) or (STAT 354\(^C\) or 354\(^{XS}\)) or (STAT 360\(^C\) or 360\(^{XS}\)).

\(^C\) Requires minimum grade of C.
\(^{XS}\) Requires minimum grade of XS.

Students with the terminated from CEC major attribute may not enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Undergraduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 463: Introduction to Exploratory Data Analysis. 3 credits. Features statistical graphics, maps and simple models used to bring out patterns in data. Introduces statistical software and addresses data access and import. Presents exploratory strategies motivating data transformations. Stresses the cognitive foundations of good graphics. Graphics include dot plots, box plots, Q-Q plots, parallel coordinate plots, scatterplot matrices and linked views. Exploration includes use of dynamic graphics. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). Limited to two attempts.

Registration Restrictions:
Required Prerequisites: (STAT 350\(^C\) or 350\(^{XS}\)) or (STAT 354\(^C\) or 354\(^{XS}\)) or (STAT 360\(^C\) or 360\(^{XS}\)).

\(^C\) Requires minimum grade of C.
\(^{XS}\) Requires minimum grade of XS.

Students with the terminated from CEC major attribute may not enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Undergraduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 465: Nonparametric Statistics and Categorical Data Analysis. 3 credits. Introduction to nonparametric methods and categorical data analysis. Topics include: tests for one-sample, two-related samples, and two independent samples; concepts of nonparametric ANOVA; tests for proportions; chi-squared tests, log-linear models, and contingency tables; goodness-of-fit tests; correlation and association analysis; nonparametric regression including logistic and Poisson regression; and bootstrapping, jackknifing, and cross-validation. Notes: Students may not receive credit for both STAT 465 and STAT 525. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). Limited to two attempts.
Recommended Corequisite: STAT 362

Registration Restrictions:

Required Prerequisites: (STAT 350*C or 350*XS) or (STAT 354*C or 354*XS) or (STAT 360*C or 360*XS).

*C Requires minimum grade of C.

*XS Requires minimum grade of XS.

Students with the terminated from CEC major attribute may **not** enroll.

Schedule Type: Lecture

Grading:

This course is graded on the Undergraduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 472: *Introduction to Statistical Learning.* 3 credits.

Recommended Corequisite: STAT 362

Registration Restrictions:

Required Prerequisites: STAT 456*C or 456*XS.

*C Requires minimum grade of C.

*XS Requires minimum grade of XS.

Students with the terminated from CEC major attribute may **not** enroll.

Schedule Type: Lecture

Grading:

This course is graded on the Undergraduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 474: *Introduction to Survey Sampling.* 3 credits.

Introduction to design and analysis of sample surveys. Sample designs include simple random sampling; systematic sampling; and stratified, cluster, and multistage sampling. Analytical methods include sample size determination, ratio and regression estimation, imputation for missing data, and nonsampling error adjustment. Practical problems encountered in conducting a survey are discussed, such as questionnaire design. Methods applied to case studies of actual surveys. Class project may be required. Notes: Recommended for students of decision, information, social sciences, and mathematics. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). Limited to two attempts.

Registration Restrictions:

Required Prerequisites: (STAT 350*C, 350*XS, 354*C, 354*XS, 360*C or 360*XS) and (STAT 362*C or 362*XS).

*C May be taken concurrently.

*C Requires minimum grade of C.

*XS Requires minimum grade of XS.

Students with the terminated from CEC major attribute may **not** enroll.

Schedule Type: Lecture

Grading:

This course is graded on the Undergraduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 489: *Pre-Capstone Professional Development.* 3 credits.

Develops skills in the areas of technical writing and oral communication. Students will develop a historical and ethical appreciation of the field of statistics as well as connect methods from their undergraduate coursework to solve problems. Students will work in small groups to develop a project proposal for STAT 490. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). Limited to two attempts.

Specialized Designation: Writing Intensive in Major

Recommended Prerequisite: Recommended minimum of 75 undergraduate credits.

Registration Restrictions:

Required Prerequisites: (STAT 354*C, 354*XS, 360*C or 360*XS) and (STAT 362*C or 362*XS) and (ENGH 302*S or 302*XS) and (COMM 100*C, 100*XS, 101*C or 101*XS).

*C Requires minimum grade of C.

*XS Requires minimum grade of XS.

Enrollment limited to students with a class of Junior, Senior Plus or Senior.

Enrollment is limited to students with a major in Statistics.

Enrollment limited to students in a Bachelor of Science degree.

Students with the terminated from CEC major attribute may **not** enroll.

Schedule Type: Lecture

Grading:

This course is graded on the Undergraduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 490: *Capstone in Statistics.* 3 credits.

Students will synthesize methods and ideas acquired in their undergraduate courses by working in small groups on a project and presenting their findings in a written report and an oral presentation. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). Limited to two attempts.

Mason Core: Capstone (http://catalog.gmu.edu/mason-core/)

Registration Restrictions:

Required Prerequisites: STAT 489*C or 489*XS.

*C Requires minimum grade of C.

*XS Requires minimum grade of XS.

Enrollment is limited to students with a major in Statistics.

Enrollment limited to students in a Bachelor of Science degree.

Students with the terminated from CEC major attribute may **not** enroll.

Schedule Type: Lecture

Grading:

This course is graded on the Undergraduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)
STAT 494: Internship In Statistics. 0-3 credits.
A supervised statistics-related experience working for a government agency, in the private sector or on approved summer research program. Based on input from the client, the student and faculty coordinator agree on the overall scope of the project including learning objectives, work plan, and expected outputs. Students will periodically inform the faculty coordinator of their status and, on completion of the internship, will document the experience with a comprehensive report or a departmental oral presentation. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May be repeated within the degree for a maximum 6 credits.

Recommended Prerequisite: Completion of at least 60 credits.

Registration Restrictions:
Enrollment is limited to students with a major in Statistics.

Schedule Type: Internship

Grading:
This course is graded on the Satisfactory/No Credit scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 498: Independent Study In Statistics. 1-3 credits.
Directed self-study of special topics of current interest in statistics. Notes: May be repeated if topics are substantially different. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May be repeated within the degree for a maximum 6 credits.

Recommended Prerequisite: 60 hours. Must be arranged with a faculty member of the Statistics Department and approved by the department chair before registering.

Registration Restrictions:
Students with the terminated from CEC major attribute may not enroll.

Schedule Type: Independent Study

Grading:
This course is graded on the Undergraduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)
STAT 525: Applied Regression Analysis. 3 credits.
Introduces statistical modeling with a focus on regression. Topics include: correlation, simple and multiple regression models, model fitting, variable selection, diagnostic tools, model validation, inference for regression parameters, and matrix forms for multiple regression. Additional topics covered include logistic regression and time series analysis with a focus on smoothing techniques and decomposition. A statistical software package is used extensively throughout the course. Notes: Students may not receive credit for both STAT 456 and STAT 526. Cannot be used to satisfy requirements for MS in Statistical Science. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May not be repeated for credit.

Registration Restrictions:
Required Prerequisites: (STAT 535\(^B\), 535\(^XS\), 554\(^B\) or 554\(^XS\)).
\(^B\) Requires minimum grade of B.
\(^XS\) Requires minimum grade of XS.

Enrollment limited to students with a class of Advanced to Candidacy, Graduate, Junior Plus, Non-Degree or Senior Plus.

Enrollment is limited to Graduate, Non-Degree or Undergraduate level students.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 526: Nonparametric Statistics and Categorical Data Analysis. 3 credits.
Introduction to nonparametric methods and categorical data analysis. Topics include: tests for one-sample, two-related samples, and two independent samples; concepts of nonparametric ANOVA; tests for proportions; chi-squared tests, log-linear models, and contingency tables; goodness-of-fit tests; correlation and association analysis; nonparametric regression including logistic and Poisson regression; and bootstrapping, jackknifing, and cross-validation. Notes: Students may not receive credit for both STAT 465 and STAT 526. Cannot be used to satisfy requirements for MS in Statistical Science. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May not be repeated for credit.

Registration Restrictions:
Required Prerequisites: (STAT 535\(^B\), 535\(^XS\), 554\(^B\) or 554\(^XS\)).
\(^B\) Requires minimum grade of B.
\(^XS\) Requires minimum grade of XS.

Enrollment limited to students with a class of Advanced to Candidacy, Graduate, Junior Plus, Non-Degree or Senior Plus.

Enrollment is limited to Graduate, Non-Degree or Undergraduate level students.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 554: Introduction to Statistical Software Packages. 3 credits.
Use of computer packages in statistical analysis of data. Topics include: data entry, checking, and manipulation; and use of statistical packages for graphical procedures, basic descriptive and inferential procedures, and regression. Notes: Cannot be used to satisfy requirements for MS in Statistical Science without prior written approval of the graduate program director. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May not be repeated for credit.

Recommended Prerequisite: STAT 250 or equivalent

Registration Restrictions:
Enrollment limited to students with a class of Advanced to Candidacy, Graduate, Junior Plus, Non-Degree or Senior Plus.

Students in a Non-Degree Undergraduate degree may not enroll.
Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 535: Analysis of Experimental Data. 3 credits.
Statistical methods for analysis of experimental data from educational research and the social, natural, and life sciences. Topics include sample surveys, contingency tables, linear and multiple regression, analysis of variance, nonparametric tests, and multivariate methods. Various statistical packages will be used. Notes: Cannot be used to satisfy requirements for MS in Statistical Science. Certificate program students granted credit for only one of STAT 535 or STAT 554. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May not be repeated for credit.

Recommended Prerequisite: STAT 250, STAT 344 or equivalent.

Registration Restrictions:
Enrollment limited to students with a class of Advanced to Candidacy, Graduate, Junior Plus, Non-Degree or Senior Plus.

Enrollment is limited to Graduate, Non-Degree or Undergraduate level students.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 539: Topics in Applied Statistics. 0-3 credits.
Special topics in applied statistics of interest to graduate students in statistics certificate programs. Notes: May be repeated for credit when topic is different. Cannot be used to satisfy requirements for MS in Statistical Science. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May be repeated within the degree for a maximum 3 credits.

Specialized Designation: Topic Varies

Recommended Prerequisite: Permission of instructor; specific prerequisites vary with the nature of the topic.

Registration Restrictions:
Enrollment limited to students with a class of Advanced to Candidacy, Graduate, Junior Plus, Non-Degree or Senior Plus.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 544: Applied Probability. 3 credits.
The axioms of probability, conditional probability, random variables and expectation, multivariate and conditional distributions, conditional expectation, order statistics, transformations, moment generating functions, special distributions, limit theorems. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May not be repeated for credit.

Recommended Prerequisite: MATH 213 and STAT 346, or permission of instructor.

Registration Restrictions:
Enrollment limited to students with a class of Advanced to Candidacy, Graduate, Junior Plus, Non-Degree or Senior Plus.

Enrollment is limited to Graduate, Non-Degree or Undergraduate level students.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

Application of basic statistical techniques. Focus is on the problem (data analysis) rather than on the theory. Topics include hypothesis testing concepts; sampling distributions; one- and two-sample tests and normal-theory based and bootstrap confidence intervals; analysis of variance; simple linear regression; randomized block design; ANCOVA models. Statistical reasoning ideas are emphasized, such as confounding, sources of variations and types of bias. Note: Certificate program students granted credit for only one of STAT 535 or 554. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May not be repeated for credit.

Recommended Prerequisite: MATH 114 and (STAT 334 or STAT 344 or STAT 346) and (Course in Statistics)

Registration Restrictions:
Enrollment limited to students with a class of Advanced to Candidacy, Graduate, Junior Plus, Non-Degree or Senior Plus.

Enrollment is limited to Graduate, Non-Degree or Undergraduate level students.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 560: Biostatistical Methods. 3 credits.
Focuses on biostatistical aspects of design and analysis of biomedical studies, including epidemiologic observational studies and randomized clinical trials. Topics include randomization principle, confounding, ethics in human experimentation, methods of randomization, stratification, primary outcome analyses, covariate-adjusted analyses, epidemiologic measures, and sample size and power computation. Note: Students may not receive credit for both STAT 460 and STAT 560. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May not be repeated for credit.

Recommended Prerequisite: STAT 350 or STAT 354 or STAT 360; and working knowledge of SAS.

Registration Restrictions:
Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 652: Statistical Inference. 3 credits.
Fundamental principles of estimation and hypothesis testing. Topics include linear models and analysis of variance for multifactor experiments with balanced and unbalanced data, linear mixed models, logistic and Poisson regression, and hierarchical log linear models for contingency tables. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May not be repeated for credit. Equivalent to CSI 672.

Registration Restrictions:
Required Prerequisites: ((STAT 544B or 544XS) and (STAT 554B or 554XS)).
B- Requires minimum grade of B-.
XS Requires minimum grade of XS.

Enrollment limited to students with a class of Advanced to Candidacy, Graduate, Junior Plus, Non-Degree or Senior Plus.

Enrollment is limited to Graduate, Non-Degree or Undergraduate level students.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

Overview of statistical principles of modeling. Topics include methods for analyzing data based on generalized linear models and diagnostic methods for assessing the assumptions of such models. Methods covered include linear models and analysis of variance for multifactor experiments with balanced and unbalanced data, linear mixed models, logistic and Poisson regression, and hierarchical log linear models for contingency tables. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May not be repeated for credit.

Recommended Prerequisite: MATH 203 and MATH 213 and STAT 346

Registration Restrictions:
Required Prerequisites: (STAT 544B or 554XS).
B- Requires minimum grade of B-.
XS Requires minimum grade of XS.

Enrollment limited to students with a class of Advanced to Candidacy, Graduate, Junior Plus or Senior Plus.

Enrollment is limited to students with a major in Biostatistics or Statistical Science.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 656: Regression Analysis. 3 credits.
Simple and multiple linear regression, polynomial regression, general linear models, subset selection, step-wise regression, and model selection. Also covered are multicollinearity, diagnostics, and model building as well as the theory and practice of regression analysis. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May not be repeated for credit. Equivalent to CSI 676.

Registration Restrictions:
Required Prerequisites: ((STAT 544B or 544XS) and (STAT 554B or 554XS)).

* May be taken concurrently.
B- Requires minimum grade of B-.
XS Requires minimum grade of XS.

Enrollment limited to students with a class of Advanced to Candidacy, Graduate, Junior Plus or Senior Plus.

Enrollment is limited to Graduate, Non-Degree or Undergraduate level students.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 657: Nonparametric Statistics. 3 credits.
Distribution-free procedures for making inferences about one or more samples; tests for lack of independence, association or trend, and monotone alternatives; nonparametric function estimation; kernel, local polynomials, and spline methods; other recent advances in function estimation. Students are introduced to appropriate statistical software. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May not be repeated for credit.

Registration Restrictions:
Required Prerequisites: ((STAT 544B or 544XS) and (STAT 554B or 554XS)).

B- Requires minimum grade of B-.
XS Requires minimum grade of XS.

Enrollment limited to students with a class of Advanced to Candidacy, Graduate, Junior Plus, Non-Degree or Senior Plus.

Enrollment is limited to Graduate, Non-Degree or Undergraduate level students.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 660: Advanced Biostatistical Methods I. 3 credits.
This course is the first in a two-course sequence in biostatistics that introduces statistical theory, methods, and computing which provide foundations to common biostatistical methods. It focuses on the design and analysis of the clinical trial, the cornerstone of the clinical biomedical research. Topics include the theory of randomization, randomization-based inference, power analysis, restricted, response-adaptive, and covariate-adaptive randomization, the modern theory of group sequential monitoring, statistical aspects of determination of dose-response relationships. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May not be repeated for credit. Equivalent to STAT 760.

Recommended Prerequisite: Working knowledge of statistical programming language.

Registration Restrictions:
Required Prerequisites: ((STAT 652B or 652XS) and (STAT 654B or 654XS)).

B- Requires minimum grade of B-.
XS Requires minimum grade of XS.

Enrollment limited to students with a class of Advanced to Candidacy, Graduate, Junior Plus, Non-Degree or Senior Plus.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 661: Advanced Biostatistical Methods II. 3 credits.
This course is the second in a two-course sequence in biostatistics that introduces statistical theory, methods, and computing which provide foundations to common biostatistical methods. The main emphasis of the course is on biostatistical models, survival analysis, and longitudinal data analysis. Specific topics include modeling and analysis of time to event data, linear mixed effects models, generalized linear models, autocorrelation functions, partial autocorrelation functions, spectral density functions, identification of models, estimation of model parameters, and forecasting techniques. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May not be repeated for credit.

Registration Restrictions:
Required Prerequisites: ((STAT 544B or 544XS) and (STAT 554B or 554XS)).

B- Requires minimum grade of B-.
XS Requires minimum grade of XS.

Enrollment limited to students with a class of Advanced to Candidacy, Graduate, Junior Plus, Non-Degree or Senior Plus.

Enrollment is limited to Graduate, Non-Degree or Undergraduate level students.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)
for correlated data (including generalized estimating equations), and
combinational issues and methods for fitting models. Offered by
Statistics (http://catalog.gmu.edu/colleges-schools/engineering-
computing/school-computing/statistics/). May not be repeated for credit.

Recommended Prerequisite: Working knowledge of statistical
programming language.

Registration Restrictions:
Required Prerequisites: ((STAT 652B or 652XS) and (STAT 654B or 654XS)).

BB Requires minimum grade of B-.
XSXS Requires minimum grade of XS.

Enrollment limited to students with a class of Advanced to Candidacy,
Graduate, Junior Plus or Senior Plus.

Students in a Non-Degree Undergraduate degree may **not** enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://
catalog.gmu.edu/policies/academic/grading/)

STAT 662: Multivariate Analysis and Statistical Learning. 3 credits.
Classical and modern techniques of modeling, analyzing and mining
multivariate data. Topics include multivariate normal theory, multivariate
linear regression, principal components, classification, factor analysis,
custering, multidimensional scaling, EM algorithm, CART, modern
predictive modeling and statistical learning methods. Applications to
data analytics. Computer implementation via a statistical package is an
integral part of the course. Offered by Statistics (http://catalog.gmu.edu/
colleges-schools/engineering-computing/school-computing/statistics/).
May not be repeated for credit.

Recommended Prerequisite: Matrix algebra, and knowledge of a
statistical package.

Registration Restrictions:
Required Prerequisites: (STAT 544B and (STAT 554B or 535B)).

BB Requires minimum grade of B-.
XSXS Requires minimum grade of XS.

Enrollment limited to students with a class of Advanced to Candidacy,
Graduate, Junior Plus, Non-Degree or Senior Plus.

Enrollment is limited to Graduate, Non-Degree or Undergraduate level
students.

Students in a Non-Degree Undergraduate degree may **not** enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://
catalog.gmu.edu/policies/academic/grading/)

STAT 665: Categorical Data Analysis. 3 credits.
Analyzes crosst-classified categorical data in two and higher dimensions.
Topics include association tests and measures of association in two- and
three-dimensional contingency tables, logistic regression, and log linear
models. SAS is used extensively for data analysis. Offered by Statistics
(http://catalog.gmu.edu/colleges-schools/engineering-computing/
school-computing/statistics/). May not be repeated for credit.

Recommended Prerequisite: Working knowledge of SAS.

Registration Restrictions:
Required Prerequisites: ((STAT 654B or 654XS) and (STAT 544B or 544XS)).

* May be taken concurrently.
BB Requires minimum grade of B-.
XSXS Requires minimum grade of XS.

Enrollment limited to students with a class of Advanced to Candidacy,
Graduate, Junior Plus, Non-Degree or Senior Plus.

Enrollment is limited to Graduate, Non-Degree or Undergraduate level
students.

Students in a Non-Degree Undergraduate degree may **not** enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://
catalog.gmu.edu/policies/academic/grading/)

STAT 668: Survival Analysis. 3 credits.
Survival Analysis is a class of statistical methods for studying the
occurrence and timing of events. In medical research, the events may
be deaths, and the objective is to determine factors affecting survival
times of patients following treatment, usually in the setting of clinical
trials. Methods can also be applied to the social and natural sciences
and engineering where they are known by other names (reliability, event
history analysis). Concepts of censored data, time-dependent variables,
and survivor and hazard functions are central. Nonparametric methods
for comparing two or more groups of survival data are studied. The
Cox regression model (proportional hazards model), Weibull model,
and the accelerated failure time model are studied in detail. Concepts
are applied to analysis of real data from major medical studies using
SAS software. Offered by Statistics (http://catalog.gmu.edu/colleges-
Required Prerequisites: Working knowledge of R and SAS.

Registration Restrictions:
Required Prerequisites: ((STAT 544B or 544XS) and (STAT 554B or 554XS)).
B Requires minimum grade of B-.
XS Requires minimum grade of XS.

Enrollment limited to students with a class of Advanced to Candidacy, Graduate, Junior Plus, Non-Degree or Senior Plus.

Enrollment is limited to Graduate, Non-Degree or Undergraduate level students.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 672: Statistical Learning and Data Analytics. 3 credits.
The course focuses on statistical learning theory by introducing the statistical and optimization background essential for understanding statistical learning algorithms. Also discusses applications of statistical learning algorithms to the solution of important problems in many areas of science. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May not be repeated for credit.

Registration Restrictions:
Required Prerequisites: ((STAT 544B or 544XS) and (STAT 554B or 554XS)).
B Requires minimum grade of B-.
XS Requires minimum grade of XS.

Enrollment limited to students with a class of Advanced to Candidacy, Graduate, Junior Plus, Non-Degree or Senior Plus.

Enrollment is limited to Graduate, Non-Degree or Undergraduate level students.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 676: Linear Models and Advanced Regression Modeling. 3 credits.
Requires minimum grade of XS.

Enrollment limited to students with a class of Advanced to Candidacy, Graduate, Junior Plus, Non-Degree or Senior Plus.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 679: Topics in Statistics. 1-3 credits.
Special topics of interest to graduate students in statistics. Notes: May be repeated for credit when topic is different. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May not be repeated for credit.

Recommended Prerequisite: Working knowledge of a statistical programming language.

Registration Restrictions:
Required Prerequisites: (STAT 654B or 654XS).
B Requires minimum grade of B-.
XS Requires minimum grade of XS.

Enrollment limited to students with a class of Advanced to Candidacy, Graduate, Junior Plus, Non-Degree or Senior Plus.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 688: Survey Sampling II. 3 credits.
Continuation of STAT 574. Applications to case studies of actual surveys. Categorical data analysis, regression models, and domain estimation from complex sampling designs, introduction to variance estimation, weighting adjustments for nonresponse, and imputation. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May not be repeated for credit.

Registration Restrictions:
Required Prerequisites: (STAT 574B or 574XS).
B Requires minimum grade of B-.
XS Requires minimum grade of XS.

Enrollment limited to students with a class of Advanced to Candidacy, Graduate, Junior Plus, Non-Degree or Senior Plus.

Enrollment is limited to Graduate, Non-Degree or Undergraduate level students.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 689: Topics in Statistics. 1-3 credits.
Special topics of interest to graduate students in statistics. Notes: May be repeated for credit when topic is different. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May not be repeated for credit.

Recommended Prerequisite: Permission of instructor; specific prerequisites vary with the nature of the topic.

Registration Restrictions:
Enrollment limited to students with a class of Advanced to Candidacy, Graduate, Junior Plus, Non-Degree or Senior Plus.

Enrollment is limited to Graduate, Non-Degree or Undergraduate level students.
Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

700 Level Courses

STAT 742: Optimization for Statistical Modeling. 3 credits.
Discusses standard classes of mathematical optimization problems and how these classes arise in statistical model fitting. Both constrained and unconstrained optimization problems are studied in detail, with an emphasis on convex problems. Specific examples are: sparsity and shape-constrained estimation, EM algorithms for mixture models, linear programming for quantile regression, semidefinite programming for sparse PCA and Gaussian graphical models. The treatment is complemented by the implementation of suitable algorithms for the solution of the above problems, including gradient descent and proximal methods, Newton and Quasi-Newton methods, interior point methods, alternating direction methods of multipliers, and MM algorithms. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May not be repeated for credit.

Recommended Prerequisite: Multivariate calculus and linear algebra.

Registration Restrictions:

Required Prerequisites: (STAT 654B, 664XS, 672B or 672XS).

- **B-** Requires minimum grade of B-.
- **XS** Requires minimum grade of XS.

Enrollment limited to students with a class of Advanced to Candidacy, Graduate or Non-Degree.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 758: Advanced Time Series Analysis. 3 credits.

Registration Restrictions:

Required Prerequisites: (STAT 658B or 658XS).

- **B-** Requires minimum grade of B-.
- **XS** Requires minimum grade of XS.

Enrollment is limited to Graduate or Non-Degree level students.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 760: Advanced Biostatistical Methods. 3 credits.

Recommended Prerequisite: Working knowledge of statistical programming language.

Registration Restrictions:

Required Prerequisites: ((STAT 652B or 652XS) and (STAT 654B or 654XS)).

- **B-** Requires minimum grade of B-.
- **XS** Requires minimum grade of XS.

Enrollment is limited to Graduate or Non-Degree level students.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 763: Statistical Graphics and Data Exploration II. 3 credits.

Registration Restrictions:

Required Prerequisites: (STAT 663B, 663XS, 515B or 515XS).

- **B-** Requires minimum grade of B-.
- **XS** Requires minimum grade of XS.

Enrollment is limited to Graduate or Non-Degree level students.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 771: Spatial Data Analysis. 3 credits.
Presents analysis techniques for spatially-indexed or spatially-correlated data that arise in many areas of science, including medicine, transportation, and atmospheric sciences. Focus is on data analysis rather than theory, though theory will necessarily be covered. Topics include analysis of point patterns, trend and surface estimation, and spatial regression. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May not be repeated for credit.
Recommended Prerequisite: Working knowledge of R and SAS.

Registration Restrictions:
Required Prerequisites: ((STAT 652B or 652XS) and (STAT 654B or 654XS)).
B: Requires minimum grade of B.
XS: Requires minimum grade of XS.

Enrollment is limited to Graduate or Non-Degree level students.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture
Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 773: Statistical Methods for Longitudinal Data Analysis. 3 credits.
Presents modern statistical approaches to the analysis of longitudinal data, i.e., data collected repeatedly on experimental units over time (or other conditions). Topics include linear mixed effects models, generalized linear models for correlated data (including generalized estimating equations), and computational issues and methods for fitting models. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May not be repeated for credit.

Recommended Prerequisite: Working knowledge of SAS.

Registration Restrictions:
Required Prerequisites: ((STAT 652B or 652XS) and (STAT 654B or 654XS)).
B: Requires minimum grade of B.
XS: Requires minimum grade of XS.

Enrollment is limited to Graduate or Non-Degree level students.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture
Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 778: Master's Research Project. 3 credits.
Project chosen and completed under guidance of graduate faculty member that results in acceptable technical report. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May not be repeated for credit.

Recommended Prerequisite: 9 graduate credits, and permission of instructor.

Registration Restrictions:
Enrollment is limited to Graduate or Non-Degree level students.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Thesis
Grading:
This course is graded on the Graduate Special scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 799: Master's Thesis. 1-6 credits.
Project chosen and completed under guidance of graduate faculty member that results in acceptable technical report and oral defense. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May be repeated within the degree for a maximum 6 credits.

Recommended Prerequisite: 9 graduate credits, and permission of instructor.

Registration Restrictions:
Enrollment is limited to Graduate or Non-Degree level students.

Students in a Non-Degree Undergraduate degree may not enroll.
Schedule Type: Thesis

Grading:
This course is graded on the Satisfactory/No Credit scale. (http://catalog.gmu.edu/policies/academic/grading/)

800 Level Courses

STAT 889: Advanced Topics in Statistics. 3 credits.
Advanced topics not occurring in regular sequence. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May be repeated within the degree for a maximum 12 credits.

Registration Restrictions:
Enrollment is limited to Graduate level students.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 971: Probability Theory. 3 credits.

Registration Restrictions:
Enrollment is limited to Graduate level students.

Schedule Type: Independent Study

Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

900 Level Courses

STAT 972: Mathematical Statistics I. 3 credits.
Focuses on theory of estimation. Includes method of moments, least squares, maximum likelihood, and maximum entropy methods. Details methods of minimum variance unbiased estimation. Topics include sufficiency and completeness of statistics, Fisher information, Cramer-Rao bounds, Bhattacharyya bounds, asymptotic consistency and distributions, statistical decision theory, minimax and Bayesian decision rules, and applications to engineering and scientific problems. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May not be repeated for credit.

Registration Restrictions:
Required Prerequisites: ((STAT 652B, 652XS, CSI 672B or 672XS) and (CSI 876B, 876XS, STAT 971B, 971XS, CSI 971B or 971XS)).
May be taken concurrently.
BS Requires minimum grade of B-
XS Requires minimum grade of XS.

Enrollment is limited to Graduate level students.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 973: Mathematical Statistics II. 3 credits.
Continuation of STAT 972/CSI 972. Concentrates on theory of hypothesis testing. Topics include characterizing decision process, simple versus simple hypothesis tests, Neyman-Pearson Lemma, uniformly most powerful tests, unbiasedness and invariance of tests, and randomized and sequential tests. Applications of testing principles made to situations in normal distribution family and other families of distributions. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May not be repeated for credit.

Registration Restrictions:
Required Prerequisites: (STAT 972B, 972XS, CSI 972B or 972XS).
BS Requires minimum grade of B-
XS Requires minimum grade of XS.

Enrollment is limited to Graduate level students.

Schedule Type: Lecture

Grading:
This course is graded on the Graduate Regular scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 990: Dissertation Topic Presentation. 1 credit.
Students put together a professional presentation of a research proposal and present it for critique to fellow students and interested faculty. Notes: May be repeated with change of research topic, but credit towards doctoral degree is given once. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May not be repeated for credit. Equivalent to CEIE 990, CS 990, IT 990.
Recommended Prerequisite: Completion of all course requirements for PhD, or permission of instructor.

Registration Restrictions:
Enrollment is limited to Graduate level students.

Enrollment limited to students in the College of Science, Engineering Computing or Schar School of Policy and Gov colleges.

Schedule Type: Research

Grading:
This course is graded on the Satisfactory/No Credit scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 998: Doctoral Dissertation Proposal. 1-12 credits.
Work on research proposal that forms basis for doctoral dissertation. Notes: No more than 24 credits of STAT 998 and 999 may be applied to doctoral degree requirements. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May be repeated within the degree.

Registration Restrictions:
Enrollment is limited to Graduate level students.

Schedule Type: Dissertation

Grading:
This course is graded on the Satisfactory/No Credit scale. (http://catalog.gmu.edu/policies/academic/grading/)

STAT 999: Doctoral Dissertation. 1-12 credits.
Formal record of commitment to doctoral dissertation research under direction of faculty member in statistics. Notes: No more than 24 credits of STAT 998 and 999 may be applied to doctoral degree requirements. Offered by Statistics (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/). May be repeated within the degree.

Registration Restrictions:
Enrollment limited to students with a class of Advanced to Candidacy.

Enrollment is limited to Graduate level students.

Schedule Type: Dissertation

Grading:
This course is graded on the Satisfactory/No Credit scale. (http://catalog.gmu.edu/policies/academic/grading/)