This Professional Science Master’s (https://www.professionalsciencemasters.org) (PSM) degree addresses the growing demand for trained bioinformatics professionals with solid management skills able to assume leadership roles in biotechnology, pharmaceutical and health care sectors. The flexible degree structure allows students to custom design a curriculum that best suits their needs and allows a focus on the biological big data analysis, genomics, or bioinformatics software development and management. Students will receive advanced training in bioinformatics and management through coursework and an external internship. The curriculum was developed with active input from the Program Advisory Board consisting of recognized leaders in the field. Many courses are offered in a distance-learning format, allowing students to participate in class without having to travel to campus.

Admissions & Policies

Admissions

University-wide admissions policies can be found in the Graduate Admissions Policies section of this catalog.

To apply for this program, please complete the George Mason University Admissions Application (https://www2.gmu.edu/admissions-aid/apply-now).

Applicants should have a bachelor’s degree in biology, computer science, or a related field with a GPA of at least 3.00 in their last 60 credits of study. Applicants should have taken courses in molecular biology, computer science, calculus, physical chemistry, and statistics. Students with deficiencies in one or more of these areas may be required to take additional courses from the undergraduate curriculum. To apply, prospective students should submit the George Mason University Admissions Application (https://www2.gmu.edu/admissions-aid/apply-now), supply two copies of official transcripts from each college and graduate institution attended, a current résumé, and an expanded goals statement. Applicants should also include three letters of recommendation and official scores obtained on the GRE general exam. The GRE requirement will be waived if the student holds a master’s degree from a U.S. institution. TOEFL or IELTS scores are required of all international applicants.

Policies

For policies governing all graduate programs, see AP.6 Graduate Policies.

Degree Requirements

Total credits: 31

Students should refer to the Admissions & Policies tab for specific policies related to this program.

Due to the varied course options and their associated prerequisites, students are encouraged to create a program of study with their faculty advisor by the end of their first semester of studies.

Bioinformatics Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BINF 630</td>
<td>Bioinformatics Methods</td>
<td>3</td>
</tr>
<tr>
<td>BINF 631</td>
<td>Molecular Cell Biology for Bioinformatics</td>
<td>3</td>
</tr>
<tr>
<td>BINF 702</td>
<td>Biological Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Select two from the following or other BINF-prefixed courses in consultation with the faculty advisor:</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>BINF 633</td>
<td>Molecular Biotechnology</td>
<td></td>
</tr>
<tr>
<td>BINF 634</td>
<td>Bioinformatics Programming</td>
<td></td>
</tr>
<tr>
<td>BINF 650</td>
<td>Introduction to Bioinformatics Database Design</td>
<td></td>
</tr>
<tr>
<td>BINF 731</td>
<td>Protein Structure Analysis</td>
<td></td>
</tr>
<tr>
<td>BINF 732</td>
<td>Genomics</td>
<td></td>
</tr>
<tr>
<td>BINF 740</td>
<td>Introduction to Biophysics</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 15

Professional Skills Courses

Please note: MBA-prefixed courses are offered on an alternative semester schedule (view the Schedule of Classes (https://patriotweb.gmu.edu/pls/prod/bwckschd.p_disp_dyn_sched) for details). Considering this, it may be advisable to take these courses in one semester rather than over several.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BINF 705</td>
<td>Research Ethics</td>
<td>1</td>
</tr>
<tr>
<td>MBA 712</td>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td>or MBA 715</td>
<td>Advanced Project and Program Management</td>
<td>3</td>
</tr>
<tr>
<td>Select one course from the following that hasn’t previously been taken:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 508</td>
<td>Selected Topics in Animal Biology (when the topic is Research & Development in Biotechnology Companies)</td>
<td></td>
</tr>
<tr>
<td>AIT 671</td>
<td>Information System Infrastructure Lifecycle Management</td>
<td></td>
</tr>
<tr>
<td>COMM 641</td>
<td>Advanced Communication Skills for STEM</td>
<td></td>
</tr>
<tr>
<td>GBUS 540</td>
<td>Analysis of Financial Decisions</td>
<td></td>
</tr>
<tr>
<td>GBUS 550</td>
<td>Strategic Thinking</td>
<td></td>
</tr>
<tr>
<td>MBA 712</td>
<td>Project Management</td>
<td></td>
</tr>
<tr>
<td>MBA 715</td>
<td>Advanced Project and Program Management</td>
<td></td>
</tr>
</tbody>
</table>
Bioinformatics Management, Professional Science Master's

MBA 725 Leadership or GBUS 551 Leadership
MBA 726 Negotiations
MBA 730 Management of Technology and Innovation Processes
MBA 738 Data Mining for Business Analytics
PUAD 781 Information Management: Technology and Policy
Or other courses in consultation with the faculty advisor
Total Credits 7

Scientific Electives
Close attention should be paid to each course's prerequisites.
Select 6 credits in courses that haven't previously been taken, tailored to suit interests and goals in consultation with the faculty advisor.

Big Data Analysis:
- CSI 695 Scientific Databases
- AIT 580 Analytics: Big Data to Information
- AIT 581 Problem Formation and Solving in Big Data
- AIT 622 Determining Needs for Complex Big Data Systems

Synthetic and Systems Biology:
- BIOS 701 Systems Biology
- CHEM 665 Protein-Protein Interactions: Methods and Applications

Human Health and Personal Genomics:
- BINF 732 Genomics
- BIOL 562 Personalized Medicine
- BIOL 566 Cancer Genomics
- BIOL 665 Environmental Hazards to Human Health
- BIOS 740 Laboratory Methods in Functional Genomics and Biotechnology
- BIOS 741 Genomics

Software Development and Analysis:
- BINF 634 Bioinformatics Programming
- SWE 510 Object-Oriented Programming in Java
- SWE 619 Object-Oriented Software Specification and Construction
- SWE 621 Software Modeling and Architectural Design
- SWE 626 Software Project Laboratory
- SWE 637 Software Testing
- SWE 645 Component-Based Software Development
- SWE 760 Software Analysis and Design of Real-Time Systems

Colloquium: 1
- BINF 704 Colloquium in Bioinformatics (may be repeated for up to 3 credits)

Additional Internship Experience 2
- BINF 795 Bioinformatics Internship

Total Credits 6

1 If chosen, it is recommended that students take the colloquium course early in their studies so that they may be exposed to various possibilities and areas of research presented by the speakers.
2 The maximum amount of internship credits that can be applied to the degree is 6 credits.

Internship
The internship component is intended to provide students with the opportunity to put into practice all of the skills and knowledge accumulated throughout their studies in this program. Students must arrange an internship with a private company, a governmental agency, a non-governmental organization, or some other entity with an interest in bioinformatics and management. Students must identify a specific person within that outside entity who will be the contact and manager of the internship.

Internship credit is never given for work previously done, or for work that would have been done in any case due to an existing employment relationship.

The internship work must produce one or more products such as: a comprehensive report, a departmental presentation, a research project, or an article. Internship placement and product type must be approved by the student's faculty advisor.

Further details and procedures for completing the internship can be found with the faculty advisor.

Three credits of internship 3
- BINF 795 Bioinformatics Internship
Total Credits 3

1
2