The core objective of the program is to train graduate students to be professional computational social scientists in academia, government, or business. The program offers a unique and innovative interdisciplinary academic environment for systematically exploring, discovering, and developing skills to successfully follow careers in one of the areas of computational social science.

Admissions & Policies

Admissions

University-wide admissions policies can be found in Graduate Admissions Policies.

To apply for this program, please complete the George Mason University Admissions Application (https://www2.gmu.edu/admissions-aid/apply-now).

Eligibility

Applicants should have as background a bachelor’s degree in one of the social sciences; computer science, engineering, or a relevant discipline; and undergraduate courses in these and related areas. Bachelor’s degrees in the physical or biological sciences are also eligible, but applicants may be required to take additional courses in social science or computer science as prerequisites to admission. Minimum requirements also include one undergraduate course in calculus and knowledge of a computer programming language, preferably object-based.

Application Requirements

Applicants should have an undergraduate degree from a regionally-accredited institution, with a GPA of at least 3.25. To apply, prospective students should complete the George Mason University Admissions Application (https://www2.gmu.edu/admissions-aid/apply-now), copies of official transcripts from each college and graduate institution attended, a current résumé, an expanded goals statement not to exceed 2,000 words, and the names of two Mason faculty members who may be suitable advisors. Applicants should also include three letters of recommendation from faculty members or individuals with direct knowledge of the student’s academic or professional capabilities. The letters must arrive directly from the senders. Applicants should also submit an official report of scores obtained on the GRE-GEN. TOEFL scores are required for all international applicants.

Policies

For policies governing all graduate degrees, see AP.6 Graduate Policies.

Reduction of Credit

Students entering the doctoral program with a master’s degree in a related discipline may request that the required credits for the doctoral degree be reduced by a maximum of 30 credits with approval of the director of graduate studies and the associate dean and in accordance with university policy. More information can be found in AP.6.5.2 Reduction of Credits (https://catalog.gmu.edu/policies/academic/graduate-policies/#ap-6-5-2).

Transfer of Credit

Students who have prior graduate coursework that has not been applied to another degree may request to have a maximum of 24 of these graduate credits transferred, with approval of the director of graduate studies and the associate dean and in accord with university policy. More information can be found in AP6.5.3 Transfer of Credit (https://catalog.gmu.edu/policies/academic/graduate-policies/#ap-6-5-3).

Academic Advising

During the first year, each student will form a graduate studies committee, called the first-year committee, consisting of the student’s advisor plus two or three appropriately qualified individuals. The committee assists the student in designing a specific plan of study and evaluating the student’s progress by the end of the first year. During the second year, the student forms a doctoral committee, with membership approved by the CSS program director. The committee will advise the student on preparing for the doctoral candidacy exams and preparing, developing, and defending the doctoral dissertation.

Requirements

Degree Requirements

Total credits: 72

Students should refer to the Admissions & Policies tab for specific policies related to this program.

Core Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSS 600</td>
<td>Introduction to Computational Social Science</td>
<td>3</td>
</tr>
<tr>
<td>CSS 605</td>
<td>Object-Oriented Modeling in Social Science</td>
<td>3</td>
</tr>
<tr>
<td>CSS 610</td>
<td>Agent-based Modeling and Simulation</td>
<td>3</td>
</tr>
<tr>
<td>CSS 620</td>
<td>Origins of Social Complexity</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 12

Extended Core Courses

Select 6 credits from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSS 625</td>
<td>Complexity Theory in the Social Sciences</td>
<td></td>
</tr>
<tr>
<td>CSS 645</td>
<td>Spatial Agent-Based Models of Human-Environment Interactions</td>
<td></td>
</tr>
<tr>
<td>CSS 692</td>
<td>Social Network Analysis</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 6
Discipline-based Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Select 15 credits of discipline-based social science courses in a specific area such as anthropology, economics, geography, history, linguistics, political science, or sociology, as approved by the student’s advisor, to provide domain-specific knowledge.</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credits: 15

Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Select 15 credits of electives or independent research, as approved by the student's advisor, to provide further substantive or methodological specialization as needed.</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credits: 15

Students with a strong background in computing, for example, a prior MS in computer science, but weaker social science training will be required to use all or most of these electives in a substantive social science. Conversely, students with a strong background in social science, for example, a BS in economics, will be required to use most or all of these electives in computing courses.

Candidacy Examination

The candidacy exam is taken after students have completed all core requirements and a majority of additional coursework (18 plus 15 credits), which typically corresponds to the fifth semester in the program. The purpose of the candidacy exam is to assess the student's substantive and methodological knowledge in CSS as a whole and in the chosen focus area, the ability to integrate materials from different courses, and the potential for a successful dissertation. The exam consists of written and oral parts.

Dissertation Proposal

Upon passing the candidacy examination, each student shall prepare and, within a year, defend a dissertation proposal, written in the form of an extramural research grant proposal. The student shall develop the dissertation proposal in consultation with the dissertation committee. With successful defense of the proposal, a student becomes a PhD candidate.

Dissertation Research

Dissertation research credits are required in order to demonstrate doctoral-level originality and research excellence:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Select 24 credits from the following:</td>
<td>24</td>
</tr>
<tr>
<td>CSS 998</td>
<td>Doctoral Dissertation Proposal</td>
<td></td>
</tr>
<tr>
<td>CSS 999</td>
<td>Doctoral Dissertation</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 24

Example Dissertation Areas

Areas for dissertation research include, but are not limited to, the following:

- Agent-based computational economics: trade, finance, decision making under risk
- Computational political economy: voting, institutions, norms, inequality
- Computational linguistics: generative grammars, parsing, classifiers, inference
- Social network analysis: connectivity, structure, evolution of the Internet, social media, cyber warfare
- Computational anthropology: emergence of hierarchy, settlement patterns
- Computational political science: systems of government, conflict and war, cooperation
- Computational sociology: segregation, collective action, leadership, trust
- Complexity theory: power laws, potential theory, criticality, bifurcation
- Computational methodology: multiagent systems, evolutionary computation
- Agent-based computational geography: land use change, humanitarian assistance, urban modeling

Doctoral Dissertation Defense

The PhD dissertation is the detailed written report of an original and significant research contribution to computational social science. It is defended before the dissertation committee in a forum open to fellow students and interested faculty and staff. The dissertation committee recommends that the graduate faculty of George Mason University accept the student candidate for the PhD degree upon a successful defense and completion of any final revisions.