The mission of this program is to train the next generation of scientists in climate dynamics and related fields. Through a comprehensive grounding in coursework, our students learn about how the atmosphere, ocean, and land surface work together to determine the climate. In collaboration with internationally-known scientists, students conduct independent work to further our understanding of climate, how it varies, and how much of it we can predict. Tools in the program include cutting-edge climate models, superb computing facilities, sophisticated statistical techniques, and comprehensive data sets. Our graduates have gone on to work at top laboratories and universities.

Understanding climate variability and predictability poses difficult mathematical, computational, and observational questions that have generated increasing intellectual excitement in recent years. Climate variability has important ramifications for society, from planning for next year’s electrical demand and forecasting agricultural production to answering complex questions involving long-term change in global climate, sea level, and biodiversity. While it is impossible to predict day-to-day weather more than a few weeks in advance, progress in predicting El Niño supports the idea that seasonal averages of temperature, rainfall, and other factors may be at least partly predictable months or even years in advance. Likewise, there is a strong scientific basis for predicting long-term changes in global climate due to changing greenhouse gas concentrations.

Climate dynamics faculty members have a blend of expertise in dynamics, statistics, and computational methods. They are heavily involved with national and international collaborations. Faculty members and students work closely with scientists at the Center for Ocean-Land-Atmosphere Studies (COLA) (http://cola.gmu.edu/cola.html), a national leader in climate modeling.

Faculty research focuses on the areas of climate prediction and predictability, climate variability, coupled ocean-atmosphere-land dynamics, and dynamical systems and retrospective analysis. Recent research topics include predictability of weather and climate; modeling of the complex climate system; El Niño dynamics; monsoons; atmosphere-ocean interaction; land-climate interaction; decadal climate variability; ocean circulation theory; and climate change.

This has been designated a Green Leaf program.

Admissions & Policies

Admissions

University-wide admissions policies can be found in the Graduate Admissions Policies section of this catalog.

To apply for this program, please complete the George Mason University Admissions Application (https://www2.gmu.edu/admissions-aid/apply-now).

Applicants should have demonstrated a high aptitude for quantitative reasoning, applied mathematics, and physical science. Applicants should have an undergraduate degree from a regionally accredited institution with a GPA of at least 3.00 in undergraduate work, and a GRE verbal plus quantitative score of 301 (1,100 on the old scale). To apply, prospective students should submit a completed George Mason University Admissions Application (https://www2.gmu.edu/admissions-aid/apply-now), a current résumé, three letters of recommendation, an expanded goals statement, and two copies of official transcripts from each college and graduate institution attended. An official report of scores obtained on the GRE-GEN should also be officially reported by ETS (https://www.ets.org). The GRE requirement for admission to the doctoral programs can be waived if the student holds a master’s degree from a regionally accredited U.S. institution. TOEFL scores are required of all international applicants who have not completed a master’s degree in the United States.

Policies

For policies governing all graduate programs, see AP.6 Graduate Policies.

Reduction of Credit

For students entering the doctoral program with a master’s degree in a related field from a regionally accredited institution, the number of required credits may be reduced up to 30 credits, subject to approval of the program faculty and the college’s associate dean for student affairs. See AP.6.5.2 Reduction of Credits for more information.

Requirements

Degree Requirements

Total credits: 72

This is a Green Leaf program.

Students should refer to the Admissions & Policies tab for specific policies related to this program.

Fundamental Climate Science Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM 610</td>
<td>Introduction to the Physical Climate System</td>
<td>3</td>
</tr>
<tr>
<td>CLIM 614</td>
<td>Land-Climate Interactions</td>
<td>3</td>
</tr>
<tr>
<td>CLIM 711</td>
<td>Introduction to Atmospheric Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>CLIM 712</td>
<td>Physical and Dynamical Oceanography</td>
<td>3</td>
</tr>
</tbody>
</table>
CLIM 751 Predictability and Prediction of Weather and Climate 3

Total Credits 15

Core Computational Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSI 690</td>
<td>Numerical Methods</td>
<td>3</td>
</tr>
<tr>
<td>CLIM 715</td>
<td>Numerical Methods for Climate Modeling</td>
<td>3</td>
</tr>
<tr>
<td>CLIM 762</td>
<td>Statistical Methods in Climate Research</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 9

Climate Seminar

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM 991</td>
<td>Climate Dynamics Seminar (taken three times)</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 3

Electives

Select 21 credits of graduate-level electives, including CLIM courses and other relevant courses as approved by the graduate coordinator. 21

CLIM courses

Total Credits 21

1 Including up to 3 credits of CLIM 796 or CLIM 996.

Advancement to Candidacy

A grade of A or B in CLIM 997 Doctoral Qualification allows a student to begin work on a Climate Dynamics doctoral dissertation by enrolling in CLIM 998 Doctoral Dissertation Proposal. Once a dissertation committee approves the dissertation proposal and the student completes all non-dissertation program requirements, the student is formally advanced to doctoral candidacy.

Dissertation Research and Defense

After approval of the dissertation proposal, students are formally advanced to doctoral candidacy and produce the dissertation while taking CLIM 999 Doctoral Dissertation. The degree's requirements will be fulfilled upon completion of the required coursework and approval of a dissertation that makes an original and significant contribution to the field.

No more than 24 combined credits from CLIM 998 Doctoral Dissertation Proposal and CLIM 999 Doctoral Dissertation may be applied toward satisfying doctoral degree requirements, with no more than 21 credits of CLIM 998 Doctoral Dissertation Proposal.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM 998</td>
<td>Doctoral Dissertation Proposal</td>
<td></td>
</tr>
<tr>
<td>CLIM 999</td>
<td>Doctoral Dissertation (minimum 3 credits)</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 24

Eligibility for Qualifying Exams

Satisfactory progress in the program is demonstrated by adequate research progress (as attested by the advisor) and by the student attaining a B- or higher in all CLIM courses and on the final exams of the “Core Climate” courses (CLIM 610 Introduction to the Physical Climate System, CLIM 614 Land-Climate Interactions, CLIM 711 Introduction to Atmospheric Dynamics, CLIM 712 Physical and Dynamical Oceanography). If any of these conditions are not met, the director of the Climate Dynamics program convenes a faculty committee to recommend whether the student should continue in the program. The director makes the final decision based upon input from the committee. A student who is allowed to continue in the program may, in a later semester, retake any Core Climate final exam in which the student’s score was below B-.

To be eligible for CLIM 997 Doctoral Qualification, students must have received a B- or higher on the final exam of each of the four Core Climate courses. Students who have taken the equivalent of any of these courses must take the Core course’s final exam even if they do not take the course.

Qualifying Exams

Students take a qualifying exam by enrolling in CLIM 997 Doctoral Qualification. Students pass the exam by demonstrating an ability to analyze scientific problems, identify an open scientific question in climate dynamics, and outline a methodology to answer the question.

Students take CLIM 997 Doctoral Qualification in their second spring semester in the program. Students who enter in the spring have the option of taking it in their 2nd or 3rd spring semester.