Today, the role of mechanical engineer is ever expanding in order to find innovative solutions for contemporary problems, and to address problems yet to be identified. To meet the growing demands of worldwide energy needs spurred by population growth and dwindling supplies of fossil fuels, for instance, mechanical engineers seek innovations in nuclear energy, bio-fuels, wind, and tidal energies to build an energy portfolio that exploits these seemingly limitless resources. From product design, which spans from biomedical devices to turbo-machinery, to manufacturing, which develops machines and systems needed to process raw materials into these products, an awareness of the benefits of advanced materials for sensing and monitoring the health of these systems and an awareness of the stealth threats to manufacturing brought on by an ever present cyber threat are in the minds of the mechanical engineers. Now more mechanical engineers oversee the operations and management of large systems along with the fiscal and human resources needed to run them.

James Michener once said, "Scientists dream about doing great things. Engineers do them." Mechanical engineers use science to advance technologies and to develop products for the benefit of society, in a discipline which dates back to the earliest of times in civilization. The major in mechanical engineering has three program education objectives, namely:

• Graduates have demonstrated success as a mechanical engineer or their chosen career field;
• Graduates have advanced their educational pursuits through graduate education, professional registration, or similar means;
• Graduates have advanced their careers by engaging in professional society participation and community service outreach.

Students are required to see their faculty advisor at least once each year to plan their curriculum.

Termination from the Major
No math, science, or Volgenau School of Engineering course that is required for the major may be attempted more than three times. Those students who do not successfully complete such a course within three attempts will be terminated from the major. Undeclared students in the Volgenau School who do not successfully complete a course required for a Volgenau School major within three attempts will also be terminated. For more information, see AP.5.2.4 Termination from the Major.

Once a student has attempted one of these courses twice unsuccessfully, the third attempt must be no later than the next semester of enrollment, excluding summers. Failure to take the course at that time will result in termination from the major. If the student is unable to take the course when required, the student may request an extension to a future semester; extensions require approval of the student’s advisor, their department, and the Associate Dean for Undergraduate Programs. The deadline for extension requests is the add deadline for the semester in which the course is required.

Students who have been terminated from a Volgenau School of Engineering major may not register for a Volgenau School course without permission of the department offering the course. This applies to all undergraduate courses offered by the Volgenau School except IT 104 Introduction to Computing (Mason Core) and STAT 250 Introductory Statistics I (Mason Core)

A student may not declare any major in the Volgenau School of Engineering if the student has previously met the termination criteria for that major at any time, regardless of what the student’s major was at the time the courses were taken.

Requirements

Degree Requirements
Total credits: 121

Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 330</td>
<td>Circuit Theory</td>
<td>3</td>
</tr>
<tr>
<td>ME 151</td>
<td>Practicum in Engineering</td>
<td>2</td>
</tr>
<tr>
<td>ME 211</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>ME 212</td>
<td>Solid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ME 221</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 231</td>
<td>Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 311</td>
<td>Mechanical Experimentation I</td>
<td>1</td>
</tr>
<tr>
<td>ME 313</td>
<td>Material Science</td>
<td>3</td>
</tr>
<tr>
<td>ME 321</td>
<td>Mechanical Experimentation II</td>
<td>1</td>
</tr>
<tr>
<td>ME 322</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ME 323</td>
<td>Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>ME 331</td>
<td>Mechatronics</td>
<td>3</td>
</tr>
<tr>
<td>ME 341</td>
<td>Design of Mechanical Elements</td>
<td>3</td>
</tr>
</tbody>
</table>
or ME 342 Design of Thermal Systems
ME 352 Entrepreneurship in Engineering 3
ME 432 Control Engineering 4
ME 443 Mechanical Design I 3
ME 444 Mechanical Design II (Mason Core) 3
ME 453 Developing the Societal Engineer 2

Technical Electives
Select 12 credits from the following: 12
ME 431 Systems Dynamics
ME 454 Project Mgmt for Engineers
ME 471 Introduction to Astronautics
ME 498 Independent Study in Mechanical Engineering 1
ME 499 Special Topics in Mechanical Engineering 1

Total Credits 61

May be repeated for credit.

Mathematics and Science

Select one from the following: 4
CHEM 211 & CHEM 213 General Chemistry I (Mason Core) and General Chemistry Laboratory I (Mason Core)
CHEM 271 & CHEM 272 General Chemistry for Engineers Lecture and General Chemistry for Engineers Lab
MATH 113 Analytic Geometry and Calculus I (Mason Core) 4
MATH 114 Analytic Geometry and Calculus II 4
MATH 213 Analytic Geometry and Calculus III 3
MATH 214 Elementary Differential Equations 3
ME 351 Analytical Methods in Engineering 3
PHYS 160 University Physics I (Mason Core) 3
PHYS 161 University Physics I Laboratory (Mason Core) 1
PHYS 260 University Physics II (Mason Core) 3
PHYS 261 University Physics II Laboratory (Mason Core) 1

Select 3 credits from the list of pre-approved mathematics/science electives 3

Total Credits 32

Mathematics and Science Electives

BIOL 213 Cell Structure and Function (Mason Core) 4
BIOL 309 Introduction to Oceanography 3
CHEM 212 & CHEM 214 General Chemistry II (Mason Core) and General Chemistry Laboratory II (Mason Core) 4
CHEM 300 Chemistry of Semiconductor Processing 3
CHEM 333 Physical Chemistry for the Life Sciences I 3
CLIM 411 Atmospheric Dynamics 3
CLIM 412 Physical Oceanography 3
CLIM 429 Atmospheric Thermodynamics 3

EVPP 210 Environmental Biology: Molecules and Cells 4
GEOL 412 Physical Oceanography 3
PHYS 262 & PHYS 263 University Physics III (Mason Core) and University Physics III Laboratory (Mason Core) 4
PHYS 331 Fundamentals of Renewable Energy 3
MATH 203 Linear Algebra 3
MATH 290 Introduction to Advanced Mathematics 3
MATH 301 Number Theory 3
MATH 302 Foundations of Geometry 3
MATH 312 Geometry 3
MATH 313 Introduction to Applied Analysis 3
MATH 314 Introduction to Applied Mathematics 3
MATH 351 Probability 3

STAT 344 Probability and Statistics for Engineers and Scientists I 3

Total Credits 4

Communication and Economics

COMM 100 Public Speaking (Mason Core) 3
or COMM 101 Fundamentals of Communication (Mason Core)
ECON 103 Contemporary Microeconomic Principles (Mason Core) 3

Total Credits 6

Additional Mason Core

Arts 3
Global Understanding 3
Literature 3
Western Civilization/World History 3
Written Communication 3

Total Credits 6

1 Both lower and upper level requirement.

Writing Intensive Requirement

Mason’s writing-intensive requirement is satisfied by ME 444 Mechanical Design II (Mason Core).

Capstone Experience Requirement

Mason’s synthesis requirement for mechanical engineering majors is satisfied by ME 444 Mechanical Design II (Mason Core).