Today, the role of mechanical engineer is ever expanding in order to find innovative solutions for contemporary problems, and to address problems yet to be identified. To meet the growing demands of worldwide energy needs spurred by population growth and dwindling supplies of fossil fuels, for instance, mechanical engineers seek innovations in nuclear energy, bio-fuels, wind, and tidal energies to build an energy portfolio that exploits these seemingly limitless resources. From product design, which spans from biomedical devices to turbo-machinery, to manufacturing, which develops machines and systems needed to process raw materials into these products, an awareness of the benefits of advanced materials for sensing and monitoring the health of these systems and an awareness of the stealth threats to manufacturing brought on by an ever present cyber threat are in the minds of the mechanical engineers. Now more mechanical engineers oversee the operations and management of large systems along with the fiscal and human resources needed to run them.

James Michener once said, "Scientists dream about doing great things. Engineers do them." Mechanical engineers use science to advance technologies and to develop products for the benefit of society, in a discipline which dates back to the earliest of times in civilization. The major in mechanical engineering has three program education objectives, namely:

  • Graduates have demonstrated success as a mechanical engineer or their chosen career field;
  • Graduates have advanced their educational pursuits through graduate education, professional registration, or similar means;
  • Graduates have advanced their careers by engaging in professional society participation and community service outreach. 

The bachelor's program in Mechanical Engineering is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.​

Policies

For policies governing all undergraduate degrees, see AP.5 Undergraduate Policies.

Change of Major

See Change of Major for more information. 

Grade Requirements and Advising

Degree requirements include 121 credits distributed in three main areas: mechanical engineering, mathematics and basic science, and humanities and social sciences. Students must complete all math, science and Volgenau School of Engineering courses presented as part of the required 121 credits for the degree with a grade of C or better.

Students are required to see their faculty advisor at least once each year to plan their curriculum.

Termination from the Major

No math, science, or Volgenau School of Engineering course that is required for the major may be attempted more than three times. Those students who do not successfully complete such a course within three attempts will be terminated from the major. Undeclared students in the Volgenau School who do not successfully complete a course required for a Volgenau School major within three attempts will also be terminated. 

In addition, students in the Volgenau School with evidence of continued failure to make adequate progress toward declaring or completing a Volgenau School major will also be terminated. Adequate progress is determined by the major program. For more information, see AP.5.2.4 Termination from the Major.

Once a student has attempted one of these courses twice unsuccessfully, the third attempt must be no later than the next semester of enrollment, excluding summers. Failure to take the course at that time will result in termination from the major. A third attempt of a Volgenau School of Engineering course requires support by the student's major department as well as permission by the department offering the course. This permission is not guaranteed. If the student is unable to take the course when required, the student may request an extension to a future semester; extensions require approval of the student's advisor, their department, and the Associate Dean for Undergraduate Programs. The deadline for extension requests is the add deadline for the semester in which the course is required.

Students who have been terminated from a Volgenau School of Engineering major may not register for a Volgenau School course without permission of the department offering the course. This applies to all undergraduate courses offered by the Volgenau School except IT 104 Introduction to Computing (Mason Core) and STAT 250 Introductory Statistics I (Mason Core).

A student may not declare any major in the Volgenau School of Engineering if the student has previously met the termination criteria for that major at any time, regardless of what the student's major was at the time the courses were taken.

Banner Code: VS-BS-ME

Degree Requirements

Total credits: 121

Engineering

Courses
ECE 330Circuit Theory3
ME 151Practicum in Engineering2
ME 211Statics3
ME 212Solid Mechanics3
ME 221Thermodynamics3
ME 231Dynamics3
ME 311Mechanical Experimentation I1
ME 313Material Science3
ME 321Mechanical Experimentation II1
ME 322Fluid Mechanics3
ME 323Heat Transfer3
ME 331Mechatronics3
ME 341Design of Mechanical Elements3
or ME 342 Design of Thermal Systems
ME 352Entrepreneurship in Engineering3
ME 432Control Engineering4
ME 443Mechanical Design I3
ME 444Mechanical Design II (Mason Core)3
ME 453Developing the Societal Engineer2
Technical Electives
Select 12 credits from the following:12
Systems Dynamics
Project Mgmt for Engineers
Introduction to Astronautics
Independent Study in Mechanical Engineering 1
Special Topics in Mechanical Engineering 1
Total Credits61

Mathematics and Science

Select one from the following:4
General Chemistry I (Mason Core)
and General Chemistry Laboratory I (Mason Core)
General Chemistry for Engineers Lecture (Mason Core)
and General Chemistry for Engineers Lab (Mason Core)
MATH 113Analytic Geometry and Calculus I (Mason Core)4
MATH 114Analytic Geometry and Calculus II4
MATH 213Analytic Geometry and Calculus III3
MATH 214Elementary Differential Equations3
ME 351Analytical Methods in Engineering3
PHYS 160University Physics I (Mason Core)3
PHYS 161University Physics I Laboratory (Mason Core)1
PHYS 260University Physics II (Mason Core)3
PHYS 261University Physics II Laboratory (Mason Core)1
Select 3 credits from the list of pre-approved mathematics/science electives3
Total Credits32

Mathematics and Science Electives

BIOL 213Cell Structure and Function (Mason Core)4
BIOL 309Introduction to Oceanography3
CHEM 212
CHEM 214
General Chemistry II (Mason Core)
and General Chemistry Laboratory II (Mason Core)
4
CHEM 300Chemistry of Semiconductor Processing3
CHEM 3333
CLIM 411Atmospheric Dynamics3
CLIM 412Physical Oceanography3
CLIM 429Atmospheric Thermodynamics3
EVPP 210Environmental Biology: Molecules and Cells4
GEOL 412Physical Oceanography3
PHYS 262
PHYS 263
University Physics III (Mason Core)
and University Physics III Laboratory (Mason Core)
4
PHYS 331Fundamentals of Renewable Energy3
MATH 203Linear Algebra3
MATH 290Introduction to Advanced Mathematics3
MATH 301Number Theory3
MATH 302Foundations of Geometry3
MATH 312Geometry3
MATH 313Introduction to Applied Analysis3
MATH 314Introduction to Applied Mathematics3
MATH 351Probability3
MATH 411Functions of a Complex Variable3
STAT 344Probability and Statistics for Engineers and Scientists I3
STAT 346Probability for Engineers3

Computer Science 

CS 112Introduction to Computer Programming (Mason Core)4
Total Credits4

Communication and Economics 

COMM 100Public Speaking (Mason Core)3
or COMM 101 Fundamentals of Communication (Mason Core)
ECON 103Contemporary Microeconomic Principles (Mason Core)3
Total Credits6

Additional Mason Core

Arts3
Global Understanding3
Literature3
Western Civilization/World History3
Written Communication 16
Total Credits18

Writing Intensive Requirement

Mason's writing-intensive requirement is satisfied by ME 444 Mechanical Design II (Mason Core).

Capstone Experience Requirement

Mason's synthesis requirement for mechanical engineering majors is satisfied by ME 444 Mechanical Design II (Mason Core).

Mechanical Engineering, BS/Applied and Engineering Physics, Accelerated MS

Overview

This program allows academically strong undergraduates with a demonstrable commitment to research to obtain the Mechanical Engineering, BS and Applied and Engineering Physics, MS degrees by successfully completing 145 credits. Upon completion, students are well-prepared for entering into the professional workforce, or a PhD program in physics or a related engineering discipline.

Admitted students take selected graduate courses during their senior year and are able to use up to 6 graduate credits in partial satisfaction of requirements for the undergraduate degree. Upon completion and conferral of the bachelor's degree and with satisfactory performance (grade of 'B' or better) in each of the graduate courses, students are given advanced standing in the master's program and complete an additional 24 credits to receive the master's degree.

For more detailed information, see AP.6.7 Bachelor's/Accelerated Master's Degrees. For policies governing all graduate degrees, see AP.6 Graduate Policies.

Application Requirements

Applicants to all graduate programs at George Mason University must meet the admission standards and application requirements for graduate study as specified in the Graduate Admission Policies section of this catalog.

Successful applicants majoring in Mechanical Engineering will have completed at least 90 credits toward their undergraduate degree with an overall GPA of at least 3.00, and the following courses with a GPA of 3.00 or better:

CS 112Introduction to Computer Programming (Mason Core)4
ME 212Solid Mechanics3
ME 231Dynamics3
ME 313Material Science3
ME 322Fluid Mechanics3
ME 323Heat Transfer3
ME 351Analytical Methods in Engineering3

One or more recommendation letters from one or more research supervisors are also required. Interested applicants majoring in Mechanical Engineering, BS should submit a letter to the undergraduate Mechanical Engineering coordinator and the Physics Graduate Coordinator, respectively, requesting admission along with the aforementioned recommendation letter(s). Contact the Mechanical Engineering undergraduate and the Physics graduate coordinator for further details.

Accelerated Option Requirements

At the beginning of the student's final undergraduate semester, students must submit a bachelor's/accelerated master's transition form to the College of Science's Office of Academic and Student Affairs. Students must begin their master's program in the semester immediately following conferral of the bachelor's degree.

Students must maintain an overall GPA of 3.00 or higher in graduate coursework.

Reserve Graduate Credit

While still in undergraduate status, a maximum of 6 additional graduate credits may be taken as reserve graduate credit and applied to the master's program. Reserve graduate credits do not apply to the undergraduate degree.

Mechanical Engineering, BS/Computational Science, Accelerated MS

Overview

This option enables enthusiastic, highly qualified, undergraduates to obtain the Mechanical Engineering, BS and the Computational Science, MS within the accelerated time frame of five years. The program requires 144 credits total, allowing students to undertake graduate coursework during their final year in the bachelor's degree. Upon completion of this 144 credit BS/MS combined program, students are exceptionally well prepared for undertaking doctoral studies or entering the professional workforce.

For more detailed information, see AP.6.7 Bachelor's/Accelerated Master's Degrees. For policies governing all graduate degrees, see AP.6 Graduate Policies.

Application Requirements

Applicants to all graduate programs at George Mason University must meet the admission standards and application requirements for graduate study as specified in the Graduate Admission Policies section of this catalog1. Application information for this Accelerated Master's program can be found on the Department of Computational and Data Sciences website. Applicants must have an overall undergraduate GPA of at least 3.00 and have completed at least 90 credits. Additionally, applicants will have completed the following courses with a GPA of 3.00 or better:

CS 112Introduction to Computer Programming (Mason Core)4
ME 212Solid Mechanics3
ME 231Dynamics3
ME 313Material Science3
ME 322Fluid Mechanics3
ME 323Heat Transfer3
ME 351Analytical Methods in Engineering3
Total Credits22

Students must maintain an overall GPA of 3.00 or higher in graduate coursework and should consult with their faculty advisor to coordinate their academic goals within the modeling and simulation or data science emphases of the Computational Science, MS.

Reserve Graduate Credit

While in undergraduate status, a student may take a maximum of six graduate credits as reserve graduate credits and apply those credits to a master's program. Reserve graduate credits are not counted toward the 120 credits required in the undergraduate degree.

Mechanical Engineering, BS/Operations Research, Accelerated MS

Overview

Highly-qualified students in the Mechanical Engineering, BS have the option of obtaining an accelerated Operations Research, MS.

For more detailed information, see AP.6.7 Bachelor's/Accelerated Master's Degrees.  For policies governing all graduate degrees, see AP.6 Graduate Policies.

Admission Requirements

Mason undergraduate students majoring in Mechanical Engineering, BS may apply to this option if they have earned 90 undergraduate credits with an overall GPA of at least 3.30 and completed all MATH and PHYS requirements. Criteria for admission are identical to criteria for admission to the Operations Research, MS program.

Students must additionally complete MATH 203 Linear Algebra prior to applying for the graduate program.

Accelerated Options Requirement

Students must complete all credits that satisfy requirements for both the BS and MS programs.  Up to two courses (6 credits) of approved master’s level courses taken as part of the undergraduate degree may be applied to the graduate degree.  The courses selected for this purpose must be approved by the academic advisors of both the BS and MS programs and by the SEOR department chair. For the BS programs that allow undergraduate electives from the department of system engineering and operations research, the students may chose the graduate version of such elective courses to replace the corresponding undergraduate courses. 

Degree Conferral

Students must apply the semester before they expect to complete the BS requirements to have the BS degree conferred. In addition, at the beginning of the student's final undergraduate semester, students must complete a Bachelor's/Accelerated Master's Transition form that is submitted to the Office of the University Registrar and the VSE Graduate Admissions Office. At the completion of MS requirements, a master's degree is conferred.

Mechanical Engineering, BS/Systems Engineering, Accelerated MS

Overview

Highly-qualified students in the Mechanical Engineering, BS have the option of obtaining an accelerated Systems Engineering, MS.

For more detailed information, see AP.6.7 Bachelor's/Accelerated Master's Degrees.  For policies governing all graduate degrees, see AP.6 Graduate Policies.

Admission Requirements

Mason undergraduate students majoring in Mechanical Engineering, BS may apply to this option if they have earned 90 undergraduate credits with an overall GPA of at least 3.30 and completed all MATH and PHYS requirements. Criteria for admission are identical to criteria for admission to the Systems Engineering, MS program.

Accelerated Options Requirement

Students must complete all credits that satisfy requirements for both the BS and MS programs. Up to two courses (6 credits) of approved master’s level courses taken as part of the undergraduate degree may be applied to the graduate degree. The courses selected for this purpose must be approved by the academic advisors of both the BS and MS programs and by the SEOR department chair. For the BS programs that allow undergraduate electives from the department of system engineering and operations research, the students may chose the graduate version of such elective courses to replace the corresponding undergraduate courses. 

Degree Conferral

Students must apply the semester before they expect to complete the BS requirements to have the BS degree conferred. In addition, at the beginning of the student's final undergraduate semester, students must complete a Bachelor's/Accelerated Master's Transition form that is submitted to the Office of the University Registrar and the VSE Graduate Admissions Office. At the completion of MS requirements, a master's degree is conferred.