SYSTEMS ENGINEERING, BS

Banner Code: EC-BS-SYST

Academic Advising

2100 Nguyen Engineering Building Fairfax Campus

Phone: 703-993-5689 Email: seor@gmu.edu

Website: https://seor.gmu.edu/

The program leading to the BS in Systems Engineering prepares students for a professional career in systems engineering. The program reflects the systems engineer's unique perspective, which considers all aspects of a system throughout its lifetime. Mason's systems engineering program is interdisciplinary, drawing from engineering, computer science, operations research, psychology, and economics. The core systems engineering courses tie these diverse threads to provide a global understanding of how individual engineering disciplines fit into the development of complex, large-scale systems. Students gain depth in a technical area by selecting a sequence of technical electives that constitute an emphasis. Students choose their own emphasis with the help of their advisor. A year-long senior design project provides hands-on experience in applying various systems engineering methods and tools. In the first two years, students obtain a basic foundation in mathematics, natural sciences, computing, writing, humanities, arts, and social sciences. The systems engineering program builds on this foundation, teaching theoretical knowledge, practical skills, and the ability to apply systems thinking to problems. Teamwork, collaborative learning, analytical skills, practical problem solving, and oral and written communication are strongly stressed.

Mission

The mission of the undergraduate program is to equip students with the ability to participate productively in the many professional activities associated with engineering a trustworthy system that satisfies client needs. The term "system" is interpreted broadly to include information, telecommunication, defense, health delivery, transportation, energy or manufacturing systems, as well as corporate processes.

Objectives

The program educational objectives of the Systems Engineering program are what we expect our students to attain within three to five years of graduation. Graduates earning the Bachelor of Science degree in Systems Engineering at George Mason University will:

- Use critical thinking, quantitative methods, and systems thinking to contribute to solutions for global societal challenges.
- Apply systems engineering methods, processes, models and tools to the engineering of complex systems.
- Advance the objectives of their organizations, profession, and society in a rapidly changing world.

Accreditation

The bachelor's program in Systems Engineering is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org. The requirements for the degree may be satisfied through part-time enrollment.

Admissions & Policies

Policies

Change of Major

See Change of Major (http://catalog.gmu.edu/colleges-schools/engineering-computing/#requirementspoliciestext) for more information.

Grade Requirements

Students in the Systems Engineering, BS program must complete all mathematics, science, and CEC courses with a grade of C or better. However, students may apply for a one-time grade waiver for no more than one mathematics, science, or CEC course with grade of C- or D.

Students must also complete any course required by the program that is a prerequisite to another course applicable to the degree with a grade of C or better.

Termination from the Major

No math, science, or College of Engineering and Computing course that is required for the major may be attempted more than three times. Those students who do not successfully complete such a course within three attempts will be terminated from the major. Undeclared students in the College of Engineering and Computing who do not successfully complete a course required for a College of Engineering and Computing major within three attempts will also be terminated.

In addition, students in the College of Education and Computing with evidence of continued failure to make adequate progress toward declaring or completing a Volgenau School major will be terminated from the school. Adequate progress is determined by the major program. For more information, see AP.5.2.4 Termination from the Major (https://catalog.gmu.edu/policies/academic/undergraduate-policies/#ap-5-2-4).

Once a student has attempted one of these courses twice unsuccessfully, the third attempt must be no later than the next semester of enrollment, excluding summers. Failure to take the course at that time will result in termination from the major. A third attempt of a College of Engineering and Computing course requires support by the student's major department as well as permission by the department offering the course. This permission is not guaranteed. If the student is unable to take the course when required, the student may request an extension to a future semester; extensions require approval of the student's advisor, their department, and the Associate Dean for Undergraduate Programs. The deadline for extension requests is the add deadline for the semester in which the course is required.

Students who have been terminated from a College of Engineering and Computing major may not register for a College of Engineering and Computing course without permission of the department offering the course. This applies to all undergraduate courses offered by the College of Engineering and Computing except IT 104 Introduction to Computing (Mason Core) (http://catalog.gmu.edu/mason-core/) and STAT 250 Introductory Statistics I (Mason Core) (http://catalog.gmu.edu/mason-core/).

A student may not declare any major in the College of Engineering and Computing if the student has previously met the termination criteria for

that major at any time, regardless of what the student's major was at the time the courses were taken.

Requirements

Degree Requirements

Total credits: 123

Mathematics and Statistics

Code	Title	Credits
MATH 113	Analytic Geometry and Calculus I (Mason Core) (http://catalog.gmu.edu/mason- core/)	4
or MATH 123 & MATH 124	Calculus with Algebra/Trigonometry, Part A and Calculus with Algebra/Trigonometry, Part	
	(Mason Core) (http://catalog.gmu.edu/maso	n-core/)
MATH 114	Analytic Geometry and Calculus II	4
MATH 203	Linear Algebra	3
MATH 213	Analytic Geometry and Calculus III	3
MATH 214	Elementary Differential Equations	3
STAT 344	Probability and Statistics for Engineers and Scientists I	3
STAT 354	Probability and Statistics for Engineers and Scientists II	3
Total Credits		23

Natural Science

Tutului Golelloc			
Code	Title	Credits	
PHYS 160 & PHYS 161	University Physics I (Mason Core) (http://catalog.gmu.edu/mason-core/) and University Physics I Laboratory (Mason Core) (http://catalog.gmu.edu/mason-core/)	4	
PHYS 260 & PHYS 261	University Physics II (Mason Core) (http://catalog.gmu.edu/mason-core/) and University Physics II Laboratory (Mason Core) (http://catalog.gmu.edu/mason-core/)	4	
Select 4 credits fro	m the following: ¹	4	
PHYS 262 & PHYS 263	University Physics III (Mason Core) (http://catalog.gmu.edu/mason-core/) and University Physics III Laboratory (Mason Core) (http://catalog.gmu.edu/ mason-core/)		
BIOL 213	Cell Structure and Function		
CHEM 211 & CHEM 213	General Chemistry I (Mason Core) (http://catalog.gmu.edu/mason-core/) and General Chemistry Laboratory I (Mason Core) (http://catalog.gmu.edu/mason-core/)		

CHEM 271	General Chemistry for Engineers Lecture
& CHEM 272	(Mason Core) (http://catalog.gmu.edu/
	mason-core/)
	and General Chemistry for Engineers Lab
	(Mason Core) (http://catalog.gmu.edu/
	mason-core/)

Total Credits 12

Students who select the Bioengineering technical emphasis area are strongly encouraged to take BIOL 213 Cell Structure and Function. Students who select the Environmental Engineering technical emphasis area are strongly encouraged to take Chemistry. Both lecture and laboratory must belong to the same natural science subject. Students are not permitted to take PHYS 262 University Physics III (Mason Core) (http://catalog.gmu.edu/mason-core/) and CHEM 213 General Chemistry Laboratory I (Mason Core) (http://catalog.gmu.edu/mason-core/) or CHEM 211 General Chemistry I (Mason Core) (http://catalog.gmu.edu/mason-core/) and PHYS 263 University Physics III Laboratory (Mason Core) (http://catalog.gmu.edu/mason-core/). Both lecture and laboratory must belong to the same natural science subject.

Computing

Computing		
Code	Title	Credits
Select from option	s below:	7
SYST 130	Introduction to Computing for Digital Systems Engineering (Mason Core) (http://catalog.gmu.edu/mason-core/)	
or CS 112	Introduction to Computer Programming (Mas Core) (http://catalog.gmu.edu/mason-core/)	son
or ENGR 125	TIntroduction to Engineering Methods - Transf (Mason Core) (http://catalog.gmu.edu/maso	
and		
SYST 230	Object-oriented Modeling and Design	
or CS 211	Object-Oriented Programming	
Total Credits		7

Communication and Economics

Code	Title	Credits
COMM 100	Public Speaking (Mason Core) (http://catalog.gmu.edu/mason-core/)	3
or COMM 101	Fundamentals of Communication (Mason Cor (http://catalog.gmu.edu/mason-core/)	e)
ECON 103	Contemporary Microeconomic Principles (Mason Core) (http://catalog.gmu.edu/ mason-core/)	3
Total Credits		6

Engineering

Code	Title	Credits
ENGR 107	Introduction to Engineering (Mason Core)	2
	(http://catalog.gmu.edu/mason-core/)	
Total Credits		2

Systems Engineering

Students must complete each of these courses with a grade of C or better.

Code	Title	Credits
SYST 101	Understanding Systems Engineering	3
SYST 210	Systems Design	3
SYST 220	Dynamical Systems I	3
SYST 221	Systems Modeling Laboratory	1
SYST 320	Dynamical Systems II	3
SYST 330	Systems Methods	3
SYST 335	Discrete Systems Modeling and Simulation	3
SYST 371	Systems Engineering Management	3
SYST 395	Applied Systems Engineering	3
SYST 470	Human Factors Engineering	3
SYST 473	Decision and Risk Analysis	3
SYST 489	Senior Seminar	3
SYST 490	Senior Design Project I	3
SYST 495	Senior Design Project II (Mason Core) (http://catalog.gmu.edu/mason-core/)	3
OR 441	Deterministic Operations Research	3
OR 442	Stochastic Operations Research	3
Select 3 approved Technical Emphas	technical electives selected from one of the is Areas below	9
Total Credits		55

Additional Mason Core

Students must complete all Mason Core (http://catalog.gmu.edu/mason-core/) requirements not fulfilled by major requirements.

Code	Title	Credits
English (6 credits)		6
ENGH 100	Composition for Multilingual Writers (Mason Core) (http://catalog.gmu.edu/ mason-core/)	
or ENGH 101	Composition (Mason Core) (http://catalog.gr mason-core/)	nu.edu/
ENGH 302	Advanced Composition (Mason Core) (http://catalog.gmu.edu/mason-core/) 1	
Literature (http://ca	atalog.gmu.edu/mason-core/#literature)	3
Arts (http://catalog	g.gmu.edu/mason-core/#arts)	3
	n/World History (http://catalog.gmu.edu/ ern-civilization-world-history)	3
Global Understand #global)	ng (http://catalog.gmu.edu/mason-core/	3
Total Credits		18

Must complete either natural science and technology or multidisciplinary section.

Technical Emphasis Areas

The systems engineering program requires 9 credits of technical electives. Students must select one of the following technical emphases, each containing three courses. Students must complete each of these courses with a grade of C or better.

Δνί	atio	n S	vet	ems
AVI	auc	лі ә	งอเ	EIII2

Code	Title	Credits
SYST 420	Network Analysis	3
SYST 460	Introduction to Air Traffic Control	3
SYST 461	Air Transportation System Engineering	3
Total Credits		9

Bioengineering

Code	Title	Credits
BENG 230	Continuum Biomechanics and Transport I	3
BENG 320	Bioengineering Signals and Systems	3
BENG 330	Computational Methods in Bioengineering	3
prerequisites. Stu	rses listed above have additional udents should pay careful attention to en selecting courses.	
Total Credits		9

Computer Network Systems

Code	Title	Credits
SYST 420	Network Analysis	3
ECE 465	Computer Networking Protocols	3
TCOM 500	Modern Telecommunications	3
Total Credits		9

Cyber Security Engineering

-,,	<i>y y</i>	
Code	Title	Credits
CYSE 211	Operating Systems and Lab	3
CYSE 430	Critical Infrastructure Protection	3
And choose one of	the following:	3
SYST 448	Technologies and Security for Cryptocurrencies and Financial Transactions	
CYSE 460	Power Systems and Smart Grid Security	
CYSE 465	Transportation Systems Design	
CYSE 470	Human Factors and Cyber Security Engineering	
CYSE 477	Intrusion Detection	
Total Credits		9

Data Analytics

Code	Title	Credits
SYST 468	Applied Predictive Analytics	3
IT 214	Database Fundamentals	3
STAT 463	Introduction to Exploratory Data Analysis	3
or SYST 438	Analytics for Financial Engineering and	
	Econometrics	
Total Credits		9

Electrical Engineering

Cod	de	Title	Credits
Sel	ect three course	s from the following:	9
I	ECE 201	Introduction to Signals and Systems	
-	ECE 301	Digital Electronics ¹	
I	ECE 321	Continuous-Time Signals and Systems	
-	ECE 330	Circuit Theory ²	

or ECE 285	Electric Circuit Analysis I
ECE 286	Electric Circuit Analysis II
SYST 421	Classical Systems and Control Theory
or ECE 410	Applications of Discrete-Time Signal Processing

Total Credits 9

Transfer credit for ECE 231 and ECE 232 will be used to fulfill ECE 301

requirement.

Credit cannot be received for both ECE 285 and ECE 330. Students

are highly recommended to take ECE 330 in place of ECE 285.

Some of the courses listed above have additional prerequisites.

Students should pay careful attention to prerequisites when selecting

Environmental Engineering

Code	Title	Credits
CEIE 240	Hydraulics	3
CEIE 355	Environmental Engineering and Science	3
CEIE 450	Environmental Engineering Systems	3
or CEIE 453	Water and Wastewater Treatment Processes	
Total Credits		9

Financial Engineering

Code	Title	Credits
SYST 438	Analytics for Financial Engineering and Econometrics	3
SYST 488	Financial Systems Engineering	3
And choose one of	the following:	3
SYST 448	Technologies and Security for Cryptocurrencies and Financial Transactions	
SYST 468	Applied Predictive Analytics	
STAT 455	Experimental Design	
STAT 463	Introduction to Exploratory Data Analysis	
MBUS 304	Entrepreneurship: Starting and Managing a New Enterprise	
Total Credits	·	9

Mechanical Engineering

Code	Title	Credits
Select one of the fo	ollowing options:	9
Option 1: Mecha	inical Design	
ME 211	Statics	
or CEIE 210	Statics	
ME 212	Solid Mechanics	
or CEIE 310	Mechanics of Materials	
ME 341	Design of Mechanical Elements	
or ME 231	Dynamics	
Option 2: Therm	al Fluids	
ME 221	Thermodynamics	
ME 322	Fluid Mechanics	
ME 323	Heat Transfer	
or ME 342	Design of Thermal Systems	

(Some of the courses listed above have additional prerequisites. Students should pay careful attention to prerequisites when selecting courses.)

Total Credits 9

Operations Research

Code	Title	Credits
OR 481	Numerical Methods in Engineering	3
SYST 420	Network Analysis	3
SYST 468	Applied Predictive Analytics	3
Total Credits		9

Software-Intensive Systems

Code	Title	Credits
CS 310	Data Structures ¹	3
CS 321	Software Engineering	3
SWE 443	Software Architectures	3
Total Credits		9

CS 310 requires CS 112 Introduction to Computer Programming (Mason Core) (http://catalog.gmu.edu/mason-core/) and CS 211 Object-Oriented Programming computing sequence. Students should pay careful attention to prerequisites when selecting courses.

Synthesis Requirement

Mason's synthesis requirement for systems engineering majors is satisfied by successful completion of SYST 495 Senior Design Project II (Mason Core) (http://catalog.gmu.edu/mason-core/). Students who do not pass SYST 495 Senior Design Project II (Mason Core) (http://catalog.gmu.edu/mason-core/) with a C or better must retake both SYST 490 Senior Design Project I and SYST 495 Senior Design Project II (Mason Core) (http://catalog.gmu.edu/mason-core/).

Writing-Intensive Requirement

Mason's writing-intensive requirement for systems engineering majors is satisfied by successful completion of SYST 489 Senior Seminar.

Advising and Plan of Study

All systems engineering students are assigned a faculty advisor. With the advisor's help and approval, each student is required to complete a plan of study. This plan of study, which is available from the SEOR office, constitutes a learning plan for the degree program and must be signed by the student's advisor and the Department Chair. The plan of study must be updated and signed by the advisor at least once per year.

4-Year Plan

Bachelor of Science in Systems Engineering Sample Plan of Study

Detailed four year plans and degree planning checklists can be found at https://advising.gmu.edu/current-student/majors-at-mason/.

Accelerated Master's

BS (any)/Statistical Science, Accelerated MS

Overview

Highly-qualified undergraduates may be admitted to the bachelor's/ accelerated master's program (BAM) and obtain an undergraduate BS degree and the Statistical Science, MS (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/statistical-science-ms/) in an accelerated time-frame after satisfactory completion of a minimum of 138 credits.

Admitted students are able to use up to 12 graduate credits in partial satisfaction of requirements for the undergraduate degree. Upon completion and conferral of the bachelor's degree and with satisfactory performance (grade of 'B' or better) in each of the graduate courses, students are given advanced standing in the master's program.

See AP.6.7 Bachelor's/Accelerated Master's Degrees (http://catalog.gmu.edu/policies/academic/graduate-policies/#ap-6-7) for policies related to this program.

Students in an accelerated degree program must fulfill all university requirements for the master's degree. For policies governing all graduate degrees, see AP.6 Graduate Policies (http://catalog.gmu.edu/policies/academic/graduate-policies/).

BAM Pathway Admission Requirements

No specific undergraduate BS degree is required. Students enrolled in any BS degree may apply to the accelerated Statistical Science, MS (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/statistical-science-ms/) program if such an accelerated Statistical Science, MS (http://catalog.gmu.edu/colleges-schools/engineering-computing/school-computing/statistics/statistical-science-ms/) pathway is allowable from the student's BS program, which will be determined by the academic advisors of both the BS and MS programs.

Applicants to all graduate programs at George Mason University must meet the admission standards and application requirements for graduate study as specified in Graduate Admissions Policies and Bachelor's/ Accelerated Master's Degree policies.

Students will be considered for admission into the BAM Pathway after completion of a minimum of 60 credits with an overall GPA of 3.0.

Students who are accepted into the BAM Pathway will be allowed to register for graduate level courses after successful completion of a minimum of 75 undergraduate credits and course-specific prerequisites.

Accelerated Master's Admission Requirements

Students already admitted in the BAM Pathway will be admitted to the Statistical Science, MS program, if they have met the following criteria, as verified on the Bachelor's/Accelerated Master's Transition form:

- Completion of Mason's requirements for undergraduate degree conferral (graduation) and completion of application for graduation.
- · An overall GPA of 3.00.
- Completion of the following Mason courses each with a grade of C or better.

Code	Title	Credits
MATH 213	Analytic Geometry and Calculus III	3
MATH 203	Linear Algebra	3
or MATH 321	Abstract Algebra	
STAT 250	Introductory Statistics I (Mason Core) (http://catalog.gmu.edu/mason-core/)	3
or STAT 344	Probability and Statistics for Engineers and Scientists I	
STAT 346	Probability for Engineers	3
or MATH 351	Probability	
STAT 362	Introduction to Computer Statistical Packages	3

Accelerated Pathway Requirements

To maintain the integrity and quality of both the undergraduate and graduate degree programs, students complete all credits satisfying degree requirements for the BS and MS programs, with up to twelve credits overlap chosen from the following graduate courses:

Code	Title	Credits
STAT 544	Applied Probability	3
STAT 554	Applied Statistics I	3
STAT 560	Biostatistical Methods	3
STAT 574	Survey Sampling I	3
STAT 663	Statistical Graphics and Data Exploration	3

All graduate course prerequisites must be completed prior to enrollment. Each graduate course must be completed with a grade of B or better to apply toward the MS degree.

While still in undergraduate status, a maximum of 6 additional graduate credits may be taken as reserve graduate credit and applied to the master's program. Reserve graduate credits do not apply to the undergraduate degree.

For more detailed information on coursework and timeline requirements, see AP.6.7 Bachelor's/Accelerated Master's Degrees (http://catalog.gmu.edu/policies/academic/graduate-policies/#ap-6-7) policies.

Degree Conferral

Students must apply the semester before they expect to complete the BS requirements to have the BS degree conferred. In addition, at the beginning of the student's final undergraduate semester, students must complete a Bachelor's/Accelerated Master's Transition form that is submitted to the Office of the University Registrar and Graduate Recruitment and Enrollment Services. At the completion of MS requirements, a master's degree is conferred.

Systems Engineering, BS/Data Analytics Engineering, Accelerated MS

Overview

Highly-qualified undergraduates may be admitted to the bachelor's/ accelerated master's program and obtain a Systems Engineering, BS and a Data Analytics Engineering, MS (http://catalog.gmu.edu/colleges-schools/engineering-computing/data-analytics-engineering-ms/) in an accelerated time-frame after satisfactory completion of a minimum of 141 credits.

Admitted students are able to use up to 12 graduate credits in partial satisfaction of requirements for the undergraduate degree. Upon completion and conferral of the bachelor's degree and with satisfactory performance (grade of 'B' or better) in each of the graduate courses, students are given advanced standing in the master's program.

See AP.6.7 Bachelor's/Accelerated Master's Degrees (https://catalog.gmu.edu/policies/academic/graduate-policies/#text) for policies related to this program.

Students in an accelerated degree program must fulfill all university requirements for the master's degree. For policies governing all graduate degrees, see AP.6 Graduate Policies (https://catalog.gmu.edu/policies/academic/graduate-policies/).

BAM Pathway Admission Requirements

Applicants to all graduate programs at George Mason University must meet the admission standards and application requirements for graduate study as specified in Graduate Admissions Policies and Bachelor's/ Accelerated Master's Degree policies.

Systems Engineering, BS students will be considered for admission into the BAM Pathway after completion of a minimum of 60 credits with an overall GPA of at least 3.0.

For the predictive analytics and financial engineering concentrations, students must submit evidence of:

- Satisfactory completion of courses in calculus, applied probability and statistics, and a scientific programming language.
- Familiarity with analytical modeling software, such as spreadsheets or math packages.

Students who are accepted into the BAM Pathway will be allowed to register for graduate level courses after successful completion of a minimum of 75 undergraduate credits and course-specific pre-requisites.

Accelerated Master's Admission Requirements

Students already admitted in the BAM Pathway will be admitted to the Data Analytics Engineering, MS program, if they have met the following criteria, as verified on the Bachelor's/Accelerated Master's Transition form:

- · An overall GPA of at least 3.0
- Successfully meeting Mason's requirements for undergraduate degree conferral (graduation) and completing the application for graduation.

Accelerated Pathway Requirements

To maintain the integrity and quality of both the undergraduate and graduate degree programs, undergraduate students interested in taking graduate courses must choose from the following:

Advanced Standing course: Students must complete all credits that satisfy requirements for both the BS and MS programs. Up to four courses (12 credits) of approved master's level courses taken as part of the undergraduate degree may be applied to the graduate degree.

These courses may be chosen from the list of graduate courses in the following table. For Systems Engineering, BS students, these graduate courses replace the corresponding undergraduate courses listed in the table. The undergraduate version of these courses may *not* be applied toward the Systems Engineering, MS.

Undergraduate	Graduate	
SYST 473	SYST 573	This course applies to only certain concentrations; Credit may not be received for both courses.
OR 441	OR 541	Satisfies OR 531 core requirement in the graduate program. Credit may not be received for both courses.
OR 442	OR 542	This course applies to only certain concentrations; Credit may not be received for both courses.
SYST 438	SYST 538	This course applies to only certain concentrations; Credit may not be received for both courses
SYST 468	SYST 568	This course applies to only certain concentrations; Credit may not be received for both courses
SYST 488	SYST 588	This course applies to only certain concentrations; Credit may not be received for both courses

For the predictive analytics and financial engineering concentration, any other 500-level course may be applied to both the undergraduate and graduate degrees with approval of the advisor and SEOR department chair.

OR 541 Operations Research: Deterministic Models will substitute for the OR 531 Analytics and Decision Analysis core requirement in the MS DAEN program. Students Bachelor of Science in Systems Engineering program are not permitted to take OR 531 Analytics and Decision Analysis.

Students must pay attention to the prerequisites required for a course, and the master's degree concentration that the course may satisfy.

While still in undergraduate status, a maximum of 6 additional graduate credits may be taken as reserve graduate credit and applied to the master's program. Reserve graduate credits do not apply to the undergraduate degree.

For more detailed information on coursework and timeline requirements, see AP.6.7 Bachelor's/Accelerated Master's Degrees (https://catalog.gmu.edu/policies/academic/graduate-policies/#text).

Degree Conferral

Students must apply the semester before they expect to complete the BS requirements to have the BS degree conferred. In addition, at the beginning of the student's final undergraduate semester, students must

complete a Bachelor's/Accelerated Master's Transition form. At the completion of MS requirements, a master's degree is conferred.

Systems Engineering BS/Operations Research, Accelerated MS

Overview

Highly-qualified undergraduates may be admitted to the bachelor's/ accelerated master's program and obtain a Systems Engineering, BS and an Operations Research, MS (http://catalog.gmu.edu/colleges-schools/engineering-computing/engineering/systems-operations-research/operations-research-ms/) in an accelerated time-frame after satisfactory completion of a minimum of 141 credits.

Admitted students are able to use up to 12 graduate credits in partial satisfaction of requirements for the undergraduate degree. Upon completion and conferral of the bachelor's degree and with satisfactory performance (grade of 'B' or better) in each of the graduate courses, students are given advanced standing in the master's program.

See AP.6.7 Bachelor's/Accelerated Master's Degrees (https://catalog.gmu.edu/policies/academic/graduate-policies/#text) for policies related to this program.

Students in an accelerated degree program must fulfill all university requirements for the master's degree. For policies governing all graduate degrees, see AP.6 Graduate Policies (https://catalog.gmu.edu/policies/academic/graduate-policies/).

BAM Pathway Admission Requirements

Applicants to all graduate programs at George Mason University must meet the admission standards and application requirements for graduate study as specified in Graduate Admissions Policies and Bachelor's/ Accelerated Master's Degree policies.

Systems Engineering, BS students will be considered for admission into the BAM Pathway after completion of a minimum of 60 credits with an overall GPA of at least 3.3, and completion of all MATH and PHYS requirements. Students must additionally complete MATH 203 Linear Algebra prior to applying for the graduate program.

Students who are accepted into the BAM Pathway will be allowed to register for graduate level courses after successful completion of a minimum of 75 undergraduate credits and course-specific pre-requisites.

Accelerated Master's Admission Requirements

The criteria for admission are identical to criteria for admission to the Operations Research, MS (http://catalog.gmu.edu/colleges-schools/engineering-computing/engineering/systems-operations-research/operations-research-ms/) program. Students already admitted in the BAM Pathway will be admitted to the Operations Research, MS (http://catalog.gmu.edu/colleges-schools/engineering-computing/engineering/systems-operations-research/operations-research-ms/) program, if they have met the following criteria, as verified on the Bachelor's/Accelerated Master's Transition form:

- · An overall GPA of at least 3.3
- Successfully meeting Mason's requirements for undergraduate degree conferral (graduation) and completing the application for graduation.

Accelerated Pathway Requirements

To maintain the integrity and quality of both the undergraduate and graduate degree programs, undergraduate students interested in taking graduate courses must choose from the following:

Advanced Standing course: Students must complete all credits that satisfy requirements for both the BS and MS programs. Up to four courses (12 credits) of approved master's level courses taken as part of the undergraduate degree may be applied to the graduate degree.

These courses may be chosen from the list of graduate courses in the following table. For Systems Engineering, BS students, these graduate courses replace the corresponding undergraduate courses listed in the table. The undergraduate version of these courses may *not* be applied toward the Operations Research, MS.

Undergraduate	Graduate	
OR 441	OR 541	Core course in the graduate program. Credit may not be received for both courses.
OR 442	OR 542	Core course in the graduate program. Credit may not be received for both courses.
SYST 420	SYST 521/OR 643	Credit may not be received for both courses.
SYST 438	SYST 538	The course applies only to certain concentrations in the graduate program; credit may not be received for both courses.
SYST 460	SYST 560	The course applies only to certain concentrations in the graduate program; credit may not be received for both courses.
SYST 461	SYST 660	The course applies only to certain concentrations in the graduate program; credit may not be received for both courses.
SYST 468	OR/SYST 568	Core course in the graduate program. Credit may not be received for both courses.
SYST 473	SYST 573	Credit may not be received for both courses.

SYST 488

SYST 588

The course applies only to certain concentrations in the graduate program; credit may not be received for both

Any other 500-level course may be applied to both the undergraduate and graduate degrees with approval of the advisor and SEOR department chair. Students must pay attention to the prerequisites required for a course, and the master's degree concentration that the course may satisfy.

courses.

While still in undergraduate status, a maximum of 6 additional graduate credits may be taken as reserve graduate credit and applied to the master's program. Reserve graduate credits do not apply to the undergraduate degree.

For more detailed information on coursework and timeline requirements, see AP.6.7 Bachelor's/Accelerated Master's Degrees (https://catalog.gmu.edu/policies/academic/graduate-policies/#text).

Degree Conferral

Students must apply the semester before they expect to complete the BS requirements to have the BS degree conferred. In addition, at the beginning of the student's final undergraduate semester, students must complete a Bachelor's/Accelerated Master's Transition form. At the completion of MS requirements, a master's degree is conferred.

Systems Engineering BS/Systems Engineering, Accelerated MS

Overview

Highly-qualified undergraduates may be admitted to the bachelor's/ accelerated master's program and obtain a Systems Engineering, BS and a Systems Engineering, MS (http://catalog.gmu.edu/colleges-schools/engineering-computing/engineering/systems-operations-research/systems-engineering-ms/) in an accelerated time-frame after satisfactory completion of a minimum of 141 credits.

Admitted students are able to use up to 12 graduate credits in partial satisfaction of requirements for the undergraduate degree. Upon completion and conferral of the bachelor's degree and with satisfactory performance (grade of 'B' or better) in each of the graduate courses, students are given advanced standing in the master's program.

See AP.6.7 Bachelor's/Accelerated Master's Degrees (http://catalog.gmu.edu/policies/academic/graduate-policies/#ap-6-7) for policies related to this program.

Students in an accelerated degree program must fulfill all university requirements for the master's degree. For policies governing all graduate degrees, see AP.6 Graduate Policies (http://catalog.gmu.edu/policies/academic/graduate-policies/).

BAM Pathway Admission Requirements

Applicants to all graduate programs at George Mason University must meet the admission standards and application requirements for graduate study as specified in Graduate Admissions Policies and Bachelor's/Accelerated Master's Degree policies.

Systems Engineering, BS students will be considered for admission into the BAM Pathway after completion of a minimum of 60 credits with an overall GPA of at least 3.3, and completion of all MATH and PHYS requirements.

Students who are accepted into the BAM Pathway will be allowed to register for graduate level courses after successful completion of a minimum of 75 undergraduate credits and course-specific pre-requisites.

Accelerated Master's Admission Requirements

The criteria for admission are identical to criteria for admission to the Systems Engineering, MS (http://catalog.gmu.edu/colleges-schools/engineering-computing/engineering/systems-operations-research/systems-engineering-ms/) program. Students already admitted in the BAM Pathway will be admitted to the Systems Engineering, MS (http://catalog.gmu.edu/colleges-schools/engineering-computing/engineering/systems-operations-research/systems-engineering-ms/) program, if they have met the following criteria, as verified on the Bachelor's/Accelerated Master's Transition form:

- · An overall GPA of at least 3.3
- Successfully meeting Mason's requirements for undergraduate degree conferral (graduation) and completing the application for graduation.

Accelerated Pathway Requirements

To maintain the integrity and quality of both the undergraduate and graduate degree programs, undergraduate students interested in taking graduate courses must choose from the following:

Advanced Standing course: Students must complete all credits that satisfy requirements for both the BS and MS programs. Up to four courses (12 credits) of approved master's level courses taken as part of the undergraduate degree may be applied to the graduate degree.

These courses may be chosen from the list of graduate courses in the following table. For Systems Engineering, BS students, these graduate courses replace the corresponding undergraduate courses listed in the table. The undergraduate version of these courses may *not* be applied toward the Systems Engineering, MS.

Undergraduate	Graduate	
OR 441	OR 541	Credit may not be received for both courses.
OR 442	OR 542	Credit may not be received for both courses.
SYST 420	SYST 521/OR 643	Credit may not be received for both courses.
SYST 438	SYST 538	The course applies only to certain concentrations in the graduate program; credit may not be received for both courses.

SYST 460	SYST 560	The course applies only to certain concentrations in the graduate program; credit may not be received for both courses.
SYST 461	SYST 660	The course applies only to certain concentrations in the graduate program; credit may not be received for both courses.
SYST 468	SYST/OR 568	The course applies only to certain concentrations in the graduate program; credit may not be received for both courses.
SYST 473	SYST 573	Credit may not be received for both courses.
SYST 488	SYST 588	The course applies only to certain concentrations in the graduate program; credit may not be received for both

Any course chosen from the above course list may be used to satisfy SYST 505 Systems Engineering Principles core requirement in the Systems Engineering, MS (http://catalog.gmu.edu/colleges-schools/engineering-computing/engineering/systems-operations-research/systems-engineering-ms/) program. Any other 500-level course may be applied to both the undergraduate and graduate degrees with approval of the advisor and SEOR department chair. Students must pay attention to the prerequisites required for a course, and the master's degree concentration that the course may satisfy.

courses.

While still in undergraduate status, a maximum of 6 additional graduate credits may be taken as reserve graduate credit and applied to the master's program. Reserve graduate credits do not apply to the undergraduate degree.

For more detailed information on coursework and timeline requirements, see AP.6.7 Bachelor's/Accelerated Master's Degrees (http://catalog.gmu.edu/policies/academic/graduate-policies/#text).

Degree Conferral

Students must apply the semester before they expect to complete the BS requirements to have the BS degree conferred. In addition, at the beginning of the student's final undergraduate semester, students must complete a Bachelor's/Accelerated Master's Transition form. At the completion of MS requirements, a master's degree is conferred.

Systems Engineering, BS/ Telecommunications, Accelerated MS

Overview

Highly-qualified undergraduates may be admitted to the bachelor's/ accelerated master's program and obtain a Systems Engineering, BS and a Telecommunications, MS (http://catalog.gmu.edu/colleges-schools/engineering-computing/engineering/electrical-computer/ telecommunications-ms/) in an accelerated time-frame after satisfactory completion of a minimum of 141 credits.

Admitted students are able to use up to 12 graduate credits in partial satisfaction of requirements for the undergraduate degree. Upon completion and conferral of the bachelor's degree and with satisfactory performance (grade of 'B' or better) in each of the graduate courses, students are given advanced standing in the master's program.

See AP.6.7 Bachelor's/Accelerated Master's Degrees (https://catalog.gmu.edu/policies/academic/graduate-policies/#text) for policies related to this program.

Students in an accelerated degree program must fulfill all university requirements for the master's degree. For policies governing all graduate degrees, see AP.6 Graduate Policies (https://catalog.gmu.edu/policies/academic/graduate-policies/).

BAM Pathway Admission Requirements

Applicants to all graduate programs at George Mason University must meet the admission standards and application requirements for graduate study as specified in Graduate Admissions Policies and Bachelor's/ Accelerated Master's Degree policies.

Students in the Systems Engineering, BS program who preferably have chosen to take the systems engineering of telecommunications elective sequence will be considered for admission into the BAM Pathway after completion of a minimum of 60 credits with an overall GPA of at least 3.0, and completed all MATH and PHYS requirements. Other students will be considered on their individual merit.

Students who are accepted into the BAM Pathway will be allowed to register for graduate level courses after successful completion of a minimum of 75 undergraduate credits and course-specific pre-requisites.

Accelerated Master's Admission Requirements

The criteria for admission are identical to criteria for admission to the Telecommunications, MS (http://catalog.gmu.edu/colleges-schools/engineering-computing/engineering/electrical-computer/telecommunications-ms/) program. Students already admitted in the BAM Pathway will be admitted to the Telecommunications, MS (http://catalog.gmu.edu/colleges-schools/engineering-computing/engineering/electrical-computer/telecommunications-ms/) program, if they have met the following criteria, as verified on the Bachelor's/Accelerated Master's Transition form:

- · An overall GPA of at least 3.0
- Successfully meeting Mason's requirements for undergraduate degree conferral (graduation) and completing the application for graduation.

Accelerated Pathway Requirements

To maintain the integrity and quality of both the undergraduate and graduate degree programs, undergraduate students interested in taking graduate courses must choose from the following:

Advanced Standing course: Students must complete all credits that satisfy requirements for both the BS and MS programs. Up to four courses (12 credits) of approved master's level courses taken as part of the undergraduate degree may be applied to the graduate degree.

These courses may be chosen from the list of graduate courses in the following table. For Systems Engineering, BS (http://catalog.gmu.edu/colleges-schools/engineering/systems-operations-research/systems-engineering-bs/) students, these graduate courses replace the corresponding undergraduate courses listed in the BS program. The undergraduate version of these courses, if any, may *not* be applied toward the Telecommunications, MS (http://catalog.gmu.edu/colleges-schools/engineering-computing/engineering/electrical-computer/telecommunications-ms/).

Code	Title	Credits
TCOM 500	Modern Telecommunications	3
TCOM 535	The TCP/IP Suite of Internet Protocols	3
OR 541	Operations Research: Deterministic Models	3
SYST 530	Systems Engineering Management I	3
SYST 573	Decision and Risk Analysis (if taken, replaces TCOM 521 in the telecommunications core requirements)	3

Students must pay attention to the prerequisites required for a course, and the master's degree concentration that the course may satisfy.

While still in undergraduate status, a maximum of 6 additional graduate credits may be taken as reserve graduate credit and applied to the master's program. Reserve graduate credits do not apply to the undergraduate degree.

For more detailed information on coursework and timeline requirements, see AP.6.7 Bachelor's/Accelerated Master's Degrees (https://catalog.gmu.edu/policies/academic/graduate-policies/#text).

Degree Conferral

Students must apply the semester before they expect to complete the BS requirements to have the BS degree conferred. In addition, at the beginning of the student's final undergraduate semester, students must complete a Bachelor's/Accelerated Master's Transition form. At the completion of MS requirements, a master's degree is conferred.