ASTRONOMY (ASTR)

100 Level Courses

ASTR 103: *Astronomy*. 3 credits.
Introduction to origin of life, Earth, planets and sun, stars, galaxies, quasars, nature of space radiation, and general theory of relativity. Note: ASTR 103 with ASTR 112 or ASTR 114 can be used to fulfill a 4-credit lab science requirement. Not for physics majors. Offered by Physics & Astronomy. May not be repeated for credit.

Mason Core: Natural Science Overview

Schedule Type: Lecture

Topics include history of astronomy, evolution of the solar system, properties of planets, scientific method, critical thinking, nature of light, and principles of telescope design. Notes: ASTR 111 and 112 can be used to fulfill a 4-credit lab science requirement; not for physics majors. Offered by Physics & Astronomy. May not be repeated for credit.

Mason Core: Natural Science with Lab

Schedule Type: Lecture

Laboratory course associated with ASTR 111. Notes: ASTR 111 and 112 can be used to fulfill a 4-credit lab science requirement; not for physics majors. Offered by Physics & Astronomy. May not be repeated for credit.

Mason Core: Natural Science with Lab

Schedule Type: Laboratory

Topics include electromagnetic radiation, stellar evolution, interstellar medium, galaxies, cosmology, scientific method, and critical thinking. Notes: ASTR 113 and 114 can be used to fulfill a 4-credit lab science requirement; not for physics majors. Offered by Physics & Astronomy. May not be repeated for credit.

Mason Core: Natural Science with Lab

Schedule Type: Laboratory

Laboratory course associated with ASTR 113. Notes: ASTR 113 and 114 can be used to fulfill a 4-credit lab science requirement; not for physics majors. Offered by Physics & Astronomy. May not be repeated for credit.

Mason Core: Natural Science with Lab

Schedule Type: Laboratory

Topics include the search for planets outside the solar system, and new developments in the theory of solar system formation with an emphasis on student-led investigation using public data sources. Notes: ASTR 115 can be used to fulfill a 4-credit lab science requirement; not for physics majors. Offered by Physics & Astronomy. May not be repeated for credit.

Mason Core: Natural Science with Lab

200 Level Courses

ASTR 210: *Introduction to Astrophysics*. 3 credits.
Introduction to astrophysics for scientists. Topics include astronomical measurement, celestial mechanics, electromagnetic radiation, stellar structure and evolution, the interstellar medium, galaxies, and a selection of topics at the forefront of astrophysics including space physics, exoplanets, galaxies, and cosmology. Offered by Physics & Astronomy. May not be repeated for credit.

Recommended Corequisite: C or higher in PHYS 262.

Schedule Type: Lecture

300 Level Courses

ASTR 301: *Astrobiology*. 3 credits.
Physical science perspective on origin and evolution of life on Earth and how life, in turn, has significantly influenced Earth's evolution. Topics include origin of Earth, mechanisms and sites for origin of life, co-evolution of life and Earth's atmosphere, habitability of planets, and the search for extraterrestrial life. Offered by Physics & Astronomy. May not be repeated for credit.

Recommended Prerequisite: MATH 108 or 113.

Schedule Type: Lecture

ASTR 302: *Foundations of Cosmological Thought*. 3 credits.
Examines scientific, historical, and philosophical foundations and development of cosmological thought from antiquity to the present. Emphasizes qualitative understanding of the development of cosmology concluding with the present concept of origin and evolution of universe. Notes: No advanced background in mathematics or natural sciences required. This course does not satisfy the PHYS elective requirement. Offered by Physics & Astronomy. May not be repeated for credit.

Mason Core: Natural Science Overview

Schedule Type: Lecture

ASTR 328: *Stars and Interstellar Medium*. 3 credits.
Stellar structure and evolution; radiative transfer; the interstellar medium. The course includes computational work. Previous programming experience is not required, as it will be developed in the course, but it is helpful. Offered by Physics & Astronomy. May not be repeated for credit. Equivalent to PHYS 328.

Recommended Prerequisite: ASTR 210, PHYS 262.

Schedule Type: Lecture

ASTR 390: *Topics in Astronomy*. 1-4 credits.
Selected topics not covered in fixed-content courses. May be repeated for credit with permission of department if topics are different. Notes: May not be included for credit by physics majors in the 45 credits of physics courses required for BS degree, or in 31 credits of physics courses...
required for BA degree. Offered by Physics & Astronomy. May be repeated within the term for a maximum 9 credits.

Schedule Type: Lecture

400 Level Courses

ASTR 401: Computer Simulation in Astronomy. 3 credits.
Techniques and methods to simulate astronomical phenomena using a computer. Examples taken from a wide variety of astronomical phenomena, including radiation transfer in astrophysical objects, self-gravitating systems, hydrodynamics, and stellar models. No advanced background in mathematics or natural sciences required. Notes: Emphasizes hands-on projects. Offered by Physics & Astronomy. May not be repeated for credit.

Recommended Prerequisite: ASTR 210.

Schedule Type: Lecture

ASTR 402: RS: Methods of Observational Astronomy. 4 credits.
An introduction to the observational, statistical, and computational techniques used by observational astronomers. The course covers some of the basic skills needed to pursue a career in astronomy and is designed around preparing for and executing an observational research project. Fulfills writing intensive requirement in the major. Offered by Physics & Astronomy. May not be repeated for credit.

Mason Core: Capstone

Specialized Designation: Research/Scholarship Intensive, Writing Intensive in the Major

Recommended Prerequisite: ASTR 210.

Schedule Type: Laboratory, Lecture

ASTR 403: Planetary Sciences. 3 credits.
Introduction to the physics and chemistry of planets and their natural satellites, asteroids, and comets. Topics include history of the solar system; origin and evolution of planets, their internal structure and atmospheres; and analytical techniques used in remote and in situ study. Offered by Physics & Astronomy. May not be repeated for credit.

Recommended Prerequisite: ASTR 210, PHYS 262.

Schedule Type: Lecture

ASTR 404: Galaxies and Cosmology. 3 credits.
The structure of the Milky Way as the basis for our knowledge of galaxies; the properties of galaxies from our local neighborhood out to the youngest galaxies in the far distant universe; observational and theoretical approaches to the structure and evolution of galaxies; the basics of cosmology and the formation of structure in the universe. Computational tools introduced in ASTR 328 are developed further. Offered by Physics & Astronomy. May not be repeated for credit.

Recommended Prerequisite: ASTR 328.

Schedule Type: Lecture

ASTR 405: Honors Thesis in Astronomy I. 3 credits.
Project chosen and completed under the guidance of a faculty member, resulting in a written thesis. An oral progress report is required for ASTR 405. Offered by Physics & Astronomy. May not be repeated for credit.

Recommended Prerequisite: Permission of instructor.

Schedule Type: Lecture

ASTR 590: Selected Topics in Astronomy and Astrophysics. 1-6 credits.
Advanced topics from recent theoretical or observational developments and their applications. Satisfies needs of professional community to keep abreast of current developments. Offered by Physics & Astronomy. May be repeated within the degree for a maximum 6 credits.

Recommended Prerequisite: Permission of instructor.

Schedule Type: Lecture
Enrollment limited to students with a class of Advanced to Candidacy, Graduate, Non Degree or Senior Plus.

Enrollment is limited to Graduate, Non-Degree or Undergraduate level students.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture

600 Level Courses

ASTR 602: Methods of Observational Astronomy. 4 credits. An introduction to the observational, statistical, and computational techniques used by observational astronomers. The course covers some of the basic skills needed to pursue a career in astronomy and is designed around preparing for and executing an observational research project. Offered by Physics & Astronomy. May not be repeated for credit.

Registration Restrictions:
Enrollment limited to students with a class of Advanced to Candidacy, Graduate, Non Degree or Senior Plus.

Enrollment is limited to Graduate, Non-Degree or Undergraduate level students.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Laboratory, Lecture

ASTR 603: Planetary Sciences. 3 credits. Offered by Physics & Astronomy. May not be repeated for credit.

Recommended Prerequisite: MATH 213 and PHYS 262

Registration Restrictions:
Enrollment limited to students with a class of Advanced to Candidacy, Graduate, Non Degree or Senior Plus.

Enrollment is limited to Graduate, Non-Degree or Undergraduate level students.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture

ASTR 604: Galaxies and Cosmology. 3 credits. The structure of the Milky Way as the basis for our knowledge of galaxies; the properties of galaxies from our local neighborhood out to the youngest galaxies in the far distant universe; observational and theoretical approaches to the structure and evolution of galaxies; the basics of cosmology and the formation of structure in the universe. Offered by Physics & Astronomy. May not be repeated for credit.

Recommended Prerequisite: ASTR 328 and MATH 214.

Recommended Corequisite: PHYS 308.

Registration Restrictions:
Enrollment limited to students with a class of Advanced to Candidacy, Graduate, Non Degree or Senior Plus.

Enrollment is limited to Graduate, Non-Degree or Undergraduate level students.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture

ASTR 660: Plasma Physics for Space and Astrophysics. 3 credits. Offered by Physics & Astronomy. May not be repeated for credit. Equivalent to PHYS 660.

Recommended Prerequisite: PHYS 305

Registration Restrictions:
Enrollment limited to students with a class of Advanced to Candidacy, Graduate, Non Degree or Senior Plus.

Enrollment is limited to Graduate, Non-Degree or Undergraduate level students.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture

ASTR 680: Physics of Interstellar Media. 3 credits. Physical processes in the interstellar media. Topics include the production and transfer of radiation, ionization and recombination, atomic and molecular excitation, dust physics, gas heating and cooling, and star formation. Offered by Physics & Astronomy. May not be repeated for credit.

Recommended Prerequisite: PHYS 402 or permission of instructor.

Registration Restrictions:
Enrollment limited to students with a class of Advanced to Candidacy, Graduate, Non Degree or Senior Plus.

Enrollment is limited to Graduate, Non-Degree or Undergraduate level students.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture

700 Level Courses

ASTR 730: Stellar Astrophysics. 3 credits. Survey of contemporary astrophysics. Topics include physical concepts, stellar spectra, Hertzsprung-Russell diagram, stellar atmospheres, stellar structure, interstellar matter, stellar evolution, high-energy phenomena, hydrodynamical processes in astrophysics, accretion disk formation, and shock formation. Offered by Physics & Astronomy. May not be repeated for credit. Equivalent to CSI 661.

Recommended Prerequisite: MATH 214, PHYS 303, 305, 308.

Registration Restrictions:
Enrollment is limited to Graduate or Non-Degree level students.

Students in a Non-Degree Undergraduate degree may not enroll.

Schedule Type: Lecture

ASTR 764: Computational Astrophysics. 3 credits. Covers statistical mechanics concepts important in astrophysics. Presents unified approach to particle acceleration and interaction theory based on analytical and numerical analysis of Boltzmann and Liouville equations. Discusses computational methods relevant to particle transport problems, with emphasis on Fokker-lanck and Monte Carlo solution techniques. Applications from space sciences include studies of cosmic ray acceleration, photon comptonization, particle transport in the near-Earth environment, energy transport in stellar atmospheres, and self-
gravitating system dynamics. Offered by Physics & Astronomy. May not be repeated for credit. Equivalent to CSI 764.

Recommended Prerequisite: ASTR 530, or permission of instructor.

Registration Restrictions:
Enrollment is limited to Graduate or Non-Degree level students.

Students in a Non-Degree Undergraduate degree may **not** enroll.

Schedule Type: Lecture

ASTR 765: *High-Energy and Accretion Astrophysics.* 3 credits.
Overview of the field of atomic and nuclear physics, including nuclear reactions of use to high-energy astrophysics. Discusses radiation processes in cosmic plasmas emphasizing quantum mechanical calculations; stellar evolution and nucleosynthesis; computational models of stellar evolution; binary stars and accretion disks; numerical models of the structure of accretion disks; compact stars, white dwarfs, neutron stars, and black holes; acceleration processes and cosmic rays; interstellar medium and propagation of cosmic rays; high-energy processes in the center of galaxies; and ground- and space-based techniques and observations. Offered by Physics & Astronomy. May not be repeated for credit. Equivalent to CSI 765.

Recommended Prerequisite: PHYS 502 and 513, and ASTR 530; or permission of instructor.

Registration Restrictions:
Enrollment is limited to Graduate or Non-Degree level students.

Students in a Non-Degree Undergraduate degree may **not** enroll.

Schedule Type: Lecture

ASTR 790: *Topics in Astronomy and Astrophysics.* 1-6 credits.
Topics from recent theoretical or observational developments and applications not covered in fixed-content astronomy and astrophysics courses. Notes: Satisfies need of professional community to keep abreast of current developments. Offered by Physics & Astronomy. May be repeated within the degree for a maximum 6 credits.

Registration Restrictions:
Enrollment is limited to Graduate or Non-Degree level students.

Students in a Non-Degree Undergraduate degree may **not** enroll.

Schedule Type: Lecture

ASTR 796: *Directed Reading and Research.* 1-12 credits.
Reading and research on a specific topic in astronomy, astrophysics, or related field under direction of faculty member. Offered by Physics & Astronomy. May be repeated within the degree for a maximum 12 credits.

Recommended Prerequisite: Admission to masters program and permission of instructor.

Registration Restrictions:
Enrollment is limited to Graduate or Non-Degree level students.

Students in a Non-Degree Undergraduate degree may **not** enroll.

Schedule Type: Research

ASTR 798: *Research Project.* 3 credits.
Research project chosen and completed under guidance of graduate faculty member resulting in an acceptable technical report. Offered by Physics & Astronomy. May not be repeated for credit.

Recommended Prerequisite: Nine graduate credits or permission of instructor.

Registration Restrictions:
Enrollment is limited to Graduate or Non-Degree level students.

Students in a Non-Degree Undergraduate degree may **not** enroll.

Schedule Type: Thesis

ASTR 799: *Master's Thesis.* 1-6 credits.
Research project chosen and completed under guidance of graduate faculty member resulting in acceptable technical report and oral defense acceptable to three-faculty-member thesis committee. Offered by Physics & Astronomy. May be repeated within the degree.

Recommended Prerequisite: 9 graduate credits and permission of instructor.

Registration Restrictions:
Enrollment is limited to Graduate or Non-Degree level students.

Students in a Non-Degree Undergraduate degree may **not** enroll.

Schedule Type: Thesis

900 Level Courses

ASTR 998: *Doctoral Dissertation Proposal.* 1-12 credits.
Covers development of a research proposal under the guidance of a dissertation director and the doctoral committee. The proposal forms the basis for the doctoral dissertation. Notes: Note: No more than 24 credits in ASTR/PHYS 998 and ASTR/PHYS 999 may be applied toward satisfying doctoral degree requirements in the physics PhD program. Out of the 24, no more than 12 credits of ASTR/PHYS 998 may be applied. Offered by Physics & Astronomy. May be repeated within the degree.

Recommended Prerequisite: Admission to the Physics doctoral program, and permission of advisor.

Registration Restrictions:
Enrollment is limited to Graduate level students.

Schedule Type: Dissertation

ASTR 999: *Doctoral Dissertation.* 1-12 credits.
Doctoral research performed under direction of dissertation director. Notes: No more than 24 credits in ASTR/PHYS 998 and ASTR/PHYS 999 may be applied toward satisfying doctoral degree requirements in the physics PhD program. Offered by Physics & Astronomy. May be repeated within the degree.

Recommended Prerequisite: Admission to doctoral candidacy in Physics PhD program and permission of advisor.

Registration Restrictions:
Enrollment limited to students with a class of Advanced to Candidacy.

Enrollment is limited to Graduate level students.

Schedule Type: Dissertation